<span>The trick here is to understand the definition of each of the cellular transport or function mechanisms listed. These are some interesting (and strange) analogies!
Facilitated Diffusion
This is when a mechanism assists in diffusing (spreading) some material into an environment. The dog on the wagon going through a spring loaded door would shoot it out into the environment. This is an odd analogy but Point 3 would be the one.
Active Transport
Is when energy is expended to transport molecules somewhere against a concentration gradient or some other barrier. Examples include transporting molecules across a cell wall. The best analogy is the dog being dragged into a bathtub (Point 1).
Phagocytosis
This is when a larger cell consumes a molecule often like eating. This matches to point 2 - the child eating the doughnut.
Passive Diffusion
Is when a concentration of molecules naturally diffuse into an environment. This suits point 5 - the crowded room full of people.
Pinocytosis
Is the budding of cell membranes to consume liquid in the surrounding environment. I guess a woman drinking tea is the closest analogy listed (Point 4).</span>
Answer:
Obese
Explanation:
Obesity can occur at any age but in recent times more and more children are becoming obese. They develop an unhealthy relationship with food from a young age. Food rather than being a source of nutrition becomes just a source of sensory stimulation.
These children often chew very fast and swallow food without properly breaking it down. Thus they are not able to realize when they are full. They ignore the internal cues for hunger or fullness and keep eating to satisfy their palate. As a result, they become obese.
Answer:
1) In the first step, we need to predict the possible alleles for the cross. The dominant allele will be written with a capital letter. The recessive allele will be written with a small letter. Hence, the allele for brown hair colour will be B and the allele for red hair colour will be b.
2) In the second step, we need to determine the genotype of the parents. The genotype of the homozygous dominant parent will be BB. The genotype of the heterozygous brown hair colour will be Bb.
3) The punnet square for cross between these parents can be shown as follows:
B b
B BB Bb
B BB Bb
4) In the fourth step, lets determine the phenotype of the children. The phenotype of all the offsprings born will be brown hair colour.
5) The genotype from the punnet square shows that there is a 50% chance that the offsprings will be heterozygous dominant (Bb) for brown hair colour and their will be a 50% chance that the child born will be homozygous dominant (BB).