Jamal’s hair is behaving that way because he is in a cold area.
<h3>Answer:</h3>
When a solute is added to a solution, it remains homogeneous because the solute is soluble in given solvent.
<h3>Explanation:</h3>
Homogeneous mixtures, also called true solutions are those mixtures in which the components proportions are same throughout in any given sample. For example, the mixture of table salt (NaCl) and water. When the solution is unsaturated and further NaCl is added to it, it will dissolve the NaCl because the saturation point is still not reached. Remember, as "<em>Like Dissolves Like</em>" NaCl being polar in nature will interact with water molecules and will dissociate into Na⁺ and Cl⁻ ions surrounded by δ- O and δ+ H atoms of water molecules.
<h3>Conclusion:</h3>
In order to form a Homogeneous mixture the solution must be unsaturated, solvent must have affinity for incoming solute particles and the size of solute should be equal to 1 Â (Angstrom).
The enthalpy change of the reaction is <u>-1347.8 kJ.</u>
<h3>What is the enthalpy change, ΔH, of the reaction?</h3>
The enthalpy change, ΔH, of the reaction is calculated from Hess's law of constant heat summation as follows:
Hess's law states that the enthalpy change of a reaction is the sum of the enthalpies of the intermediate reaction.
Given the reactions below and their enthalpy values;
1. X (s) + 12 O₂ (g)⟶ XO (s) ΔH₁ = −850.5 kJ
2. XCO₃ (s) ⟶ XO (s) + CO₂ (g) ΔH₂ = +497.3 kJ
The enthalpy change, ΔH, of the reaction whose equation is given below, will be:
X (s) + 12 O₂ (g) + CO₂ (g) ⟶ XCO₃ (s)
ΔH = ΔH₁ - ΔH₂
ΔH = − 850.5 kJ - (+497.3 kJ)
ΔH = -1347.8 kJ
Learn more about enthalpy change at: brainly.com/question/14047927
#SPJ1
Considering the definition of pOH and strong base, the pOH of the aqueous solution is 1.14
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution and indicates the concentration of ion hydroxide (OH-).
pOH is expressed as the logarithm of the concentration of OH⁻ ions, with the sign changed:
pOH= - log [OH⁻]
On the other hand, a strong base is that base that in an aqueous solution completely dissociates between the cation and OH-.
LiOH is a strong base, so the concentration of the hydroxide will be equal to the concentration of OH-. This is:
[LiOH]= [OH-]= 0.073 M
Replacing in the definition of pOH:
pOH= -log (0.073 M)
<u><em>pOH= 1.14 </em></u>
In summary, the pOH of the aqueous solution is 1.14
Learn more:
The correct answer is A MODEL OF MOUNTAIN FORMATION.
A model refers to a representation of an idea, a process or a system, which is used to explain a specific phenomenon that can not be experienced directly. Models are often used in science to explain many phenomenon. When we are talking about a suitable model to represent an event that happens slowly, the most obvious choice from the options given above is mountain formation. This is because, the process of mountain formation occurs very slowly over a long period of time.