Answer: 502 Joules
Explanation:
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 40.0 mL
Putting values in above equation, we get:

When metal is dipped in water, the amount of heat released by lead will be equal to the amount of heat absorbed by water.

The equation used to calculate heat released or absorbed follows:

q = heat absorbed by water
= mass of water = 40.0 g
= final temperature of water = 20.0°C
= initial temperature of water = 17.0°C
= specific heat of water= 4.186 J/g°C
Putting values in equation 1, we get:
![q=40.0\times 4.186\times (20.0-17.0)]](https://tex.z-dn.net/?f=q%3D40.0%5Ctimes%204.186%5Ctimes%20%2820.0-17.0%29%5D)

Hence, the joules of heat were re-leased by the lead is 502
The mass of the piece of wood is 35.58 g.
Joule = M × T × C
Where, M = mass
T = change in temperature(42C-23C=19 C)
C = specific heat capacity = 1.716 joules/gram
Substituting the values in the equation,
1160 = M × 19 × 1.716
M = 1160/32.604 = 35.58 g
Therefore, the mass of the piece of wood = 35.58 g
<h3>What is meant by specific heat capacity?</h3>
A material's specific heat capacity, which is defined as its heat capacity divided by its mass, determines how much energy is required to increase a gram's temperature by one degree Celsius (or one Kelvin)
<h3>What is mass?</h3>
Mass is the quantity of matter in a physical body.
To learn more about specific heat capacity visit:
brainly.com/question/1747943
#SPJ4
Answer:
The corrext answer is E. make; break
Explanation:
In living organisms, the metabolism is either anabolic or catabolic where anabolic metabolism is energy consuming and catabolic metabolism is eneegy releasesing. It should however be noted that anabolic reaction builds or biosynthesize new mollecular structures while catabolic reaction breaks down complex structure bonds into simple structures
The braking down of bonds in catabolic reations realeses energy to sustain the anabolic rection process for the formation of new bonds
Answer: 72L of 30% and 128L of 80%
You can determine the weight of the acid by multiplying the concentration with the volume. Let say v1 is the volume of 30% solution needed and v2 is the volume of 80% solution.
The weight of acid from the used solution should be equal to the product. You can get this equation
final solution= solution1 + solution2
200l * 62%= v1 * 30% + v2*80%
124L= 0.3v1 + 0.8v2
124L- 0.3v1= 0.8v2
v2=155L- 0.375v1
The total volume of both should be 200l. If you use the previous equation, you can calculate:
v1+v2=200L
v1+ (155L- 0.375v1)= 200L
0.625v1= 200L - 155L
v1= 45/ 0.625= 72L
v1+v2=200L
v2= 200L- 72L= 128L
As per the question, the mass of the nitrogen gas m = 22.25 gram.
The latent heat of vaporization of nitrogen = 199.0 j/g
As per the question, the nitrogen gas will condense. During condensation, the nitrogen gas will lose or release heat equal to its latent heat.
Hence, the heat released by nitrogen gas Q = ml = 22.25 × 199.0 J = 4427.75 J.
Hence, the amount of heat released will be 4427.75 J.
<h3>How can you figure out how much heat is in each gram?</h3>
The formula: can be utilized to determine energy. Q = mc ∆T. In the equation, Q stands for energy expressed in joules or calories, m for mass expressed in grams, c for specific heat, and T for temperature change, which is the difference between the final temperature and the initial temperature. Water has a specific heat of 1 calorie/gram °C.
Learn more about energy here:
brainly.com/question/1932868
#SPJ4