Answer:
really?
Step-by-step explanation:
Answer:
x = 4√5
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Trigonometry</u>
[Right Triangles Only] Pythagorean Theorem: a² + b² = c²
- a is a leg
- b is another leg
- c is the hypotenuse<u>
</u>
Step-by-step explanation:
<u>Step 1: Define</u>
Leg <em>a</em> = 8
Leg <em>b</em> = 4
Hypotenuse <em>c</em> = <em>x</em>
<em />
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute in variables [Pythagorean Theorem]: 8² + 4² = x²
- Evaluate exponents: 64 + 16 = x²
- Add: 80 = x²
- [Equality Property] Square root both sides: √80 = x
- Rewrite: x = √80
- Simplify: x = 4√5
Answer:

Step-by-step explanation:
The total surface area of this triangular prism consists of three rectangles and two triangles. Adding the areas of each of these shapes allows us to find the total surface area of this 3D figure:
Area of both triangles:

Area of all three rectangles:

Therefore, the total surface area of this figure is:

Answer:
Adding the exponents
Step-by-step explanation:
Multiplying exponential terms with the same base
To multiply exponents with same base , we use exponential property

When we multiply exponents with same base then we add the exponents
So, adding the exponents best explains to simplify the expression that has same base with exponents .
Why not? Because every math system you've ever worked with has obeyed these properties! You have never dealt with a system where a×b did not in fact equal b×a, for instance, or where (a×b)×c did not equal a×(b×c). Which is why the properties probably seem somewhat pointless to you. Don't worry about their "relevance" for now; just make sure you can keep the properties straight so you can pass the next test. The lesson below explains how I kept track of the properties.