1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klasskru [66]
3 years ago
6

Please help me i’ve been stuck on this one

Mathematics
1 answer:
marta [7]3 years ago
6 0
I think it’s the first answer AB and CD
You might be interested in
The line through (6,-6) with slope 1/2 in point-slope form ?
aleksandrvk [35]

Answer: y + 6 = \frac{1}{2}(x - 6)

Step-by-step explanation:

Point-slope formula:  y - y1 = m(x - x1)

Plug in the numbers: y - -6 = \frac{1}{2}(x-6)

Clear the double negatives: y + 6 = \frac{1}{2}(x - 6)

8 0
3 years ago
Please help me it is due in 10 minutes
MAXImum [283]

Answer:

whooops no one had answered u from 50 min!

3 0
2 years ago
If MP=6x-5,QR=3x+1, and RN=6, what is QN
stepan [7]

Answer:

12

Step-by-step explanation:

12

7 0
2 years ago
Q and r are independent events. if p(q) = 1/4 and p(r)=1/5, find p(q and r)
klasskru [66]

Answer:

(b) \frac{7}{30}

Step-by-step explanation:

When two p and q events are independent then, by definition:

P (p and q) = P (p) * P (q)

Then, if q and r are independent events then:

P(q and r) = P(q)*P(r) = 1/4*1/5

P(q and r) = 1/20

P(q and r) = 0.05


In the question that is shown in the attached image, we have two separate urns. The amount of white balls that we take in the first urn does not affect the amount of white balls we could get in the second urn. This means that both events are independent.


In the first ballot box there are 9 balls, 3 white and 6 yellow.

Then the probability of obtaining a white ball from the first ballot box is:

P (W_{u_1}) = \frac{3}{9} = \frac{1}{3}

In the second ballot box there are 10 balls, 7 white and 3 yellow.

Then the probability of obtaining a white ball from the second ballot box is:

P (W_{u_2}) = \frac{7}{10}

We want to know the probability of obtaining a white ball in both urns. This is: P(W_{u_1} and W_{u_2})  

As the events are independent:

P(W_{u_1} and W_{u_2})  = P (W_{u_1}) * P (W_{u_2})

P(W_{u_1} and W_{u_2})  = \frac{1}{3}* \frac{7}{10}

P(W_{u_1} and W_{u_2})  = \frac{7}{30}

Finally the correct option is (b) \frac{7}{30}

3 0
3 years ago
Solve the proportion. i need help.<br> x+3/6=8/3<br><br> x=?
stellarik [79]

Answer:

x = 2 1/6 (13/6)

Step-by-step explanation:

to solve the proportion you must first find the LCF or least common factor

that is 6

so turn 8/3 into 16/6 by multiplying it by 2/2

x + 3/6 = 16/6

then you subtract 3/6 from both sides

x = 13/6

x is 2 1/6

6 0
2 years ago
Read 2 more answers
Other questions:
  • What is the absolute value I need help please help me complete this problem
    5·1 answer
  • In 25 minutes Li can run 10 laps around the track determine the number of laps she can do per minute
    10·1 answer
  • Can someone just tell me what the correct postulate theorems are for these ?
    15·1 answer
  • Help please!!!!!!!!!!!!!!!!!!!!!!
    14·1 answer
  • How many possible outcomes are there when spinning a spinner numbered from 1 to 8 and tossing a coin?
    15·2 answers
  • Solve the following equation 5x-15=50
    6·2 answers
  • Brian made a tasty burger . the diameter of the buger was 5cm what is the radius of the circle
    15·2 answers
  • A/5=b/7 if b#0 what is the value of a/b​
    14·1 answer
  • Sara takes 1/6 of an hour to vacuum his moms car it takes 4 times that long to wash the car then it takes you to wax the car twi
    9·1 answer
  • I need a answer on this math equation<br> 4 + (−1 2/3)<br><br> Any solutions?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!