Answer:
6108795
Step-by-step explanation:
To obtain the number of ways the committee can be selected :
4 teachers from the 12 teachers available and 3 students from the 43 students available
Using combinatorics :
12C4 * 43C3
recall :
nCr = n! ÷ (n - r)!r!
Using calculator :
12C4 = 495
43C3 = 12341
12C4 * 43C3
495 * 12341
= 6108795
Answer:
Step-by-step explanation:
a) edj
b) ed
c) i think ag
<h2>
Explanation:</h2><h2>
</h2>
Hello! Remember you have to write complete questions in order to get good and exact answers. Here you forgot to write the relation so I could help you providing my own relation.
Remember that for any relation, we have a set
that matches the the domain (also called the set of inputs) of the function and the set
that contains the range (also called the set of outputs).
Suppose our relation is:

So the x-values represents the set A and the y-values the set B. Therefore, by evaluating the x-values into our relation we get:

So in this context, the correct option is:
B) (-9,-8, -7, -6, -5}
<span>To find the mean absolute deviation of the data, start by finding the mean of the data set.Find the sum of the data values, and divide the sum by the number of data values.Find the absolute value of the difference between each data value and the mean: ...<span>Find the sum of the absolute values of the differences.</span></span>
Answer:
51/4
Step-by-step explanation:
To begin with you have to understand what is the distribution of the random variable. If X represents the point where the bus breaks down. That is correct.
X~ Uniform(0,100)
Then the probability mass function is given as follows.

Now, imagine that the D represents the distance from the break down point to the nearest station. Think about this, the first service station is 20 meters away from city A, and the second station is located 70 meters away from city A then the mid point between 20 and 70 is (70+20)/2 = 45 then we can represent D as follows

Now, as we said before X represents the random variable where the bus breaks down, then we form a new random variable
,
is a random variable as well, remember that there is a theorem that says that
![E[Y] = E[D(X)] = \int\limits_{-\infty}^{\infty} D(x) f(x) \,\, dx](https://tex.z-dn.net/?f=E%5BY%5D%20%3D%20E%5BD%28X%29%5D%20%3D%20%5Cint%5Climits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20D%28x%29%20f%28x%29%20%5C%2C%5C%2C%20dx)
Where
is the probability mass function of X. Using the information of our problem
![E[Y] = \int\limits_{-\infty}^{\infty} D(x)f(x) dx \\= \frac{1}{100} \bigg[ \int\limits_{0}^{20} x dx +\int\limits_{20}^{45} (x-20) dx +\int\limits_{45}^{70} (70-x) dx +\int\limits_{70}^{100} (x-70) dx \bigg]\\= \frac{51}{4} = 12.75](https://tex.z-dn.net/?f=E%5BY%5D%20%3D%20%5Cint%5Climits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%20D%28x%29f%28x%29%20dx%20%5C%5C%3D%20%5Cfrac%7B1%7D%7B100%7D%20%5Cbigg%5B%20%5Cint%5Climits_%7B0%7D%5E%7B20%7D%20x%20dx%20%2B%5Cint%5Climits_%7B20%7D%5E%7B45%7D%20%28x-20%29%20dx%20%2B%5Cint%5Climits_%7B45%7D%5E%7B70%7D%20%2870-x%29%20dx%20%2B%5Cint%5Climits_%7B70%7D%5E%7B100%7D%20%28x-70%29%20dx%20%20%5Cbigg%5D%5C%5C%3D%20%5Cfrac%7B51%7D%7B4%7D%20%3D%2012.75)