Answer:
y= $1.50x
Step-by-step explanation:
Each bagel is $1.50,therefore for each family member(x) the amount increaes by the same rate
128/7 is roughly 18.3 so you would need 19 vans. 18 of them would fit all 7 so you’d have 126 so the last van would fit 2 students meaning it won’t be full
Answer: 1
Step-by-step explanation: Because it is
Answer:
base =5 because all angles=60, so an equilateral triangle
height=4.33
Step-by-step explanation:
height^2+1/2(5)^2=5^2
height^2+6.25=25
height^2=18.75
height=4.33
Answer:
Max Value: x = 400
General Formulas and Concepts:
<u>Algebra I</u>
- Domain is the set of x-values that can be inputted into function f(x)
<u>Calculus</u>
- Antiderivatives
- Integral Property:
![\int {cf(x)} \, dx = c\int {f(x)} \, dx](https://tex.z-dn.net/?f=%5Cint%20%7Bcf%28x%29%7D%20%5C%2C%20dx%20%3D%20c%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx)
- Integration Method: U-Substitution
- [Integration] Reverse Power Rule:
![\int {x^n} \, dx = \frac{x^{n+1}}{n+1} + C](https://tex.z-dn.net/?f=%5Cint%20%7Bx%5En%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bx%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D%20%2B%20C)
Step-by-step explanation:
<u>Step 1: Define</u>
![f(x) = \frac{1}{\sqrt{800-2x} }](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B800-2x%7D%20%7D)
<u>Step 2: Identify Variables</u>
<em>Using U-Substitution, we set variables in order to integrate.</em>
![u = 800-2x\\du = -2dx](https://tex.z-dn.net/?f=u%20%3D%20800-2x%5C%5Cdu%20%3D%20-2dx)
<u>Step 3: Integrate</u>
- Define:
![\int {f(x)} \, dx](https://tex.z-dn.net/?f=%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx)
- Substitute:
![\int {\frac{1}{\sqrt{800-2x} } } \, dx](https://tex.z-dn.net/?f=%5Cint%20%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B800-2x%7D%20%7D%20%7D%20%5C%2C%20dx)
- [Integral] Int Property:
![-\frac{1}{2} \int {\frac{-2}{\sqrt{800-2x} } } \, dx](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%20%5Cint%20%7B%5Cfrac%7B-2%7D%7B%5Csqrt%7B800-2x%7D%20%7D%20%7D%20%5C%2C%20dx)
- [Integral] U-Sub:
![-\frac{1}{2} \int {\frac{1}{\sqrt{u} } } \, du](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%20%5Cint%20%7B%5Cfrac%7B1%7D%7B%5Csqrt%7Bu%7D%20%7D%20%7D%20%5C%2C%20du)
- [Integral] Rewrite:
![-\frac{1}{2} \int {u^{-\frac{1}{2} }} \, du](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%20%5Cint%20%7Bu%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%20%5C%2C%20du)
- [Integral - Evaluate] Reverse Power Rule:
![-\frac{1}{2}(2\sqrt{u}) + C](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%282%5Csqrt%7Bu%7D%29%20%2B%20C)
- Simplify:
![-\sqrt{u} + C](https://tex.z-dn.net/?f=-%5Csqrt%7Bu%7D%20%2B%20C)
- Back-Substitute:
![-\sqrt{800-2x} + C](https://tex.z-dn.net/?f=-%5Csqrt%7B800-2x%7D%20%2B%20C)
- Factor:
![-\sqrt{-2(x - 400)} + C](https://tex.z-dn.net/?f=-%5Csqrt%7B-2%28x%20-%20400%29%7D%20%2B%20C)
<u>Step 4: Identify Domain</u>
We know from a real number line that we cannot have imaginary numbers. Therefore, we cannot have any negatives under the square root.
Our domain for our integrated function would then have to be (-∞, 400]. Anything past 400 would give us an imaginary number.