Answer:
Step-by-step explanation:
The domain of the function y=tan(x) ) is all real numbers except the values where cos(x) is equal to 0 , that is, the values π2+πn for all integers n . The range of the tangent function is all real numbers.
Answer:
hi dear I suppose the answer would be 6271$
Answer:
a posative
Step-by-step explanation:
<span>The urn contains 2 purple balls and 4 white balls. The player pay $4 for start the game and get $1.5 for every ball drawn until one purple ball is drawn. The maximal revenue would be $7.5 when 4 white balls and 1 purple balls are drawn.
If the purple ball is p and white ball is w, t</span>he possible sample space of drawings are {p, wp, wwp, wwwp, wwwwp}
<span>1. Write down the probability distribution for the player earning
The player earning </span>for each event depends on the number of balls drawn subtracted the ticket price.<span>
p= 2/6
The player earnings would be: 1*$1.5 -$4= - $2.5
wp= (4*2)/(6*5) = 4/15
</span>The player earnings would be: 2*1.5- $4= - $1
wwp= (4*3*2)/(6*5*4)= 1/5
The player earnings would be: 3*$1.5 -$4= $0.5
wwwp= (4*3*2*2)/(6*5*4*3*2)= 2/15
The player earnings would be: 4*$1.5 -$4= $2
wwwwp= (4*3*2*2*1)/(6*5*4*3*2*1) = 1/15
The player earnings would be: 5*$1.5 -$4= $3.5
2. Find its expected value
The expected value would be:
chance of event * earning
You need to combine the 5 possible outcomes from the number 1 to get the total expected value.
Total expected value= (1/3 * - 2.5)+ (4/15*-1) + (1/5*0.5) + (2/15 *2) + ( 1/15 *3.5)=
(-12.5 -4 + 1.5 + 4 + 3.5) /15= -$7.5
This game basically a rip off.
Answer:
- zeros: x = -3, -1, +2.
- end behavior: as x approaches -∞, f(x) approaches -∞.
Step-by-step explanation:
I like to use a graphing calculator for finding the zeros of higher order polynomials. The attachment shows them to be at x = -3, -1, +2.
__
The zeros can also be found by trial and error, trying the choices offered by the rational root theorem: ±1, ±2, ±3, ±6. It is easiest to try ±1. Doing so shows that -1 is a root, and the residual quadratic is ...
x² +x -6
which factors as (x -2)(x +3), so telling you the remaining roots are -3 and +2.
___
For any odd-degree polynomial with a positive leading coefficient, the sign of the function will match the sign of x when the magnitude of x gets large. Thus as x approaches negative infinity, so does f(x).