Answer:
C
Explanation:
<em>During respiration, oxygen diffuses into the lung (carbon dioxide diffuses out), gets into the blood, and is transported around the body. The hemoglobin of the blood distributes the oxygen to the various cells and carbon dioxide from these cells diffuses into the blood. The blood travels back to the lung where the carbon dioxide is exchanged for oxygen once again. The carbon dioxide is eventually exhaled out of the nose.</em>
The correct option is C.
The friction force between the box and the incline if the box does not slide down the incline will be 0.577
The force preventing sliding against one another of solid surfaces, fluid layers, and material components is known as friction. There are several kinds of friction: Two solid surfaces in touch are opposed to one another's relative lateral motion by dry friction.
Given the box resting on the inclined plane above has a mass of 20kg and the The incline sits at a 30 degree angle
We have to find the friction force between the box and the incline if the box does not slide down the incline
Since the frictional force F₁ must equal or exceed gravitational force F₂ down the incline:
F₁ = F₂
μmgcosΘ = mgsinΘ
μ = (mgsinΘ)/(mgcosΘ)
μ = tanΘ
μ = 0.577
Hence the friction force between the box and the incline if the box does not slide down the incline will be 0.577
Learn more about friction force here:
brainly.com/question/24386803
#SPJ4
Answer:
The acidic or the basic nature of a substance can be determined using a pH indicator. If the pH indicator , shows a pH value less than 7 , the substance is acidic. Lower the pH , high is the acidic nature.
Explanation:
Answer:
I = 0.0025 kg.m²
Explanation:
Given that
m= 2 kg
Diameter ,d= 0.1 m
Radius ,

R=0.05 m
The moment of inertia of the cylinder about it's axis same as the disc and it is given as

Now by putting the all values

I = 0.0025 kg.m²
Therefore we can say that the moment of inertia of the cylinder will be 0.0025 kg.m².
To solve the problem we will first start considering the Pressure given the hydrostatic definition of the product between the density, the gravity and the depth. We will define the area where the liquid acts and later we will use the definition of the force as a product between the pressure and the area to calculate the force given in the two depths. The gauge pressure at the depth x will be

This pressure acts on the strip of area

The force acting on that strip is given by,



To evaluate the force, we will then consider the integral of the pressure as a function of the Area, or the integral of the previously found terms.


Evaluating at the initial depth of 1.8m and the final depth of 4.4 we have then that,


Therefore the Net force will be


