"If air in a pump is squeezed more, then the air gets hotter because energy is added to it" is a good hypothesis that could lead to new experimentation.
<u>Option: C</u>
<u>Explanation:</u>
If we use a pump to inflate a basketball, we initially pull the handle to draw air to fill the sphere in. As we move it down we apply a great deal of force to pump in air through the pin's tiny hole because of this resistance force in the air we find the tube warmed.
A needle of ball pump is a metal tube in which air, from an inflating pump to a sports ball, moves through it. In continuous-flow operation, pumps are often used and built to produce comparatively little pressure towards a free-flowing environment with limited back pressure. Such pumps have a fixed configuration and work freely along their power curve as circumstances change.
Explanation:
Fluid gauge pressure is:
P = ρgh
where ρ is the fluid density and h is the depth of the fluid.
P = (1000 kg/m³) (9.8 m/s²) (1642 m)
P = 16,091,600 Pa
Rounded to four significant figures, the gauge pressure is 16.09 MPa.
Answer:
This question is incomplete
Explanation:
This question is incomplete because the telescope's focal length was not provided. The formula to be used here is
Magnification = telescope's focal length/eyepiece's focal length
The eyepiece's focal length was provided in the question as 0.38 m.
NOTE: Magnification can be described as the power of an instrument (in this case telescope) to enlarge an object. It has no unit and thus the two focal lengths mentioned in the formula above must be in the same unit (preferably meters since one of them is in meters already).
The answer would be 6 because 2.0x3= 6
(newton’s 2nd law)
mark me brainliest