Answer:A7.50kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of2.30s. Find the force constant of the spring.
N/m
Explanation:
Answer:
0.0389 cm
Explanation:
The current density in a conductive wire is given by

where
I is the current
A is the cross-sectional area of the wire
In this problem, we know that:
- The fuse melts when the current density reaches a value of

- The maximum limit of the current in the wire must be
I = 0.62 A
Therefore, we can find the cross-sectional area that the wire should have:

We know that the cross-sectional area can be written as

where d is the diameter of the wire.
Re-arranging the equation, we find the diameter of the wire:

Dubnium is a synthetic element ... Number 105. It can be created
in a laboratory but it's not found in nature.
Fifteen (15) different isotopes of Dubnium have been created. They all
have 105 protons in the nucleus of every atom, but they have anywhere
from 256 to 270 neutrons in each nucleus.
The most stable isotope of Dubnium is ²⁶⁸Db , with 163 neutrons in the
nucleus. That form of Dubnium atom has a 50-50 chance of surviving
for around 28 hours before it falls apart.
<span />
The electric force on the electron is opposite in direction to the electric field E. E points in the -y direction, so the electric force will point in the +y direction. The magnitude of the electric force is given by:
F = Eq
F = electric force, E = electric field strength, q = electron charge
We need to set up a magnetic field such that the magnetic force on the electron balances out the electric force. Since the electric force points in the +y direction, we need the magnetic force to point in the -y direction. Using the reversed right hand rule, the magnetic field must point in the -z direction for this to happen. Since the direction is perpendicular to the +x direction of the electron's velocity, the magnetic force is given by:
F = qvB
F = magnetic force, q = charge, v = velocity, B = magnetic field strength
The electric force must equal the magnetic force.
Eq = qvB
Do some algebra to isolate B:
E = vB
B = E/v
Let's solve for the electron's velocity. Its kinetic energy is given by:
KE = 0.5mv²
KE = kinetic energy, m = mass, v = velocity
Given values:
KE = 2.9keV = 4.6×10⁻¹⁶J
m = 9.1×10⁻³¹kg
Plug in and solve for v:
4.6×10⁻¹⁶ = 0.5(9.1×10⁻³¹)v²
v = 3.2×10⁷m/s
B = E/v
Given values:
E = 7500V/m
v = 3.2×10⁷m/s
Plug in and solve for B:
B = 7500/3.2×10⁷
B = 0.00023T
B = 0.23mT