Step-by-step explanation:
Statement:
"If two sides of a triangle are congruent, then the angles opposite of them are congruent"
Converse:
If two angles of a triangle are congruent, then the two sides opposite them are congruent.
The converse of the statement is true and can be proven true using a two-column proof. In fact it is a theorem.
Step-by-step explanation:
<u>Step 1: Add 8 to both sides</u>
![-\frac{1}{4}x - 8 + 8 < \frac{3}{4} + 8](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7Dx%20-%208%20%2B%208%20%3C%20%5Cfrac%7B3%7D%7B4%7D%20%2B%208)
![-\frac{1}{4}x < \frac{35}{4}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7Dx%20%3C%20%5Cfrac%7B35%7D%7B4%7D)
<u>Step 2: Multiply both sides by -4</u>
![-\frac{1}{4}x * -\frac{4}{1} < \frac{35}{4} * -\frac{4}{1}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7Dx%20%2A%20-%5Cfrac%7B4%7D%7B1%7D%20%3C%20%5Cfrac%7B35%7D%7B4%7D%20%2A%20-%5Cfrac%7B4%7D%7B1%7D)
![x > -35](https://tex.z-dn.net/?f=x%20%3E%20-35)
Answer: ![x > -35](https://tex.z-dn.net/?f=x%20%3E%20-35)
Lets write this out:-
![\frac{50}{100} + \frac{30}{100}](https://tex.z-dn.net/?f=%20%5Cfrac%7B50%7D%7B100%7D%20%2B%20%5Cfrac%7B30%7D%7B100%7D%20)
To answer this we just need to add the numerators of both fractions because the denominator's are already common multiples.
![\frac{50}{100}+ \frac{30}{100} = \frac{80}{100}](https://tex.z-dn.net/?f=%20%5Cfrac%7B50%7D%7B100%7D%2B%20%5Cfrac%7B30%7D%7B100%7D%20%3D%20%5Cfrac%7B80%7D%7B100%7D%20)
Now lets simplify
![\frac{80}{100}](https://tex.z-dn.net/?f=%20%5Cfrac%7B80%7D%7B100%7D%20)
.
![\frac{80/20}{100/20}= \frac{4}{5}](https://tex.z-dn.net/?f=%20%5Cfrac%7B80%2F20%7D%7B100%2F20%7D%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20%20)
So,
![\frac{50}{100}+ \frac{30}{100} = \frac{80}{100}= \frac{4}{5}](https://tex.z-dn.net/?f=%20%5Cfrac%7B50%7D%7B100%7D%2B%20%20%5Cfrac%7B30%7D%7B100%7D%20%3D%20%5Cfrac%7B80%7D%7B100%7D%3D%20%5Cfrac%7B4%7D%7B5%7D%20%20)
Hope I helped ya!! xD
Hopes that somehow helps✍︎︎