The answer is going to be 8 left over. hope that helped
Answer:
x=0, - 9
Step-by-step explanation:
x^2+9x=0
x(x+9)=0
x=0 or x=-9
Answer:
The second term of the sequence is 8 False ⇒ B
The third term of the sequence is 3 True ⇒ A
The fourth term of the sequence is -3 True ⇒ A
Step-by-step explanation:
The form of the recursive rule is:
f(1) = first term; f(n) = f(n - 1) + d, where
- f(n - 1) is the term before the nth term
- d is the common difference
∵ f(1) = 15, f(n) = f(n - 1) - 6 for n ≥ 2
∴ The first term = 15
∴ d = -6
let us find the 2nd, 3rd, and 4th terms
∵ n = 2
∴ f(2) = f(1) - 6
∵ f(1) = 15
∴ f(2) = 15 - 6 = 9
∴ The second term is 9
∴ The second term of the sequence is 8 False
∵ n = 3
∴ f(3) = f(2) - 6
∵ f(2) = 9
∴ f(3) = 9 - 6 = 3
∴ The third term is 3
∴ The third term of the sequence is 3 True
∵ n = 4
∴ f(4) = f(3) - 6
∵ f(3) = 3
∴ f(4) = 3 - 6 = -3
∴ The fourth term is -3
∴ The fourth term of the sequence is -3 True
Answer:
63
Step-by-step explanation:

divide, 27 ÷ 3
you'll get 9, so
x = 9
Next part
5y = 35
divide both sides by 5 to isolate y,
5y ÷ 5 = 35 ÷ 5
=
y = 7
So
x = 9 and y = 7
Then let's add the numbers to our equation ( x × y)
9 × 7
=
63
Answer:
g(1) = -65; g(n) = g(n-1) -15
Step-by-step explanation:
Using n = 1, 2, 3, we can find the first three terms of the sequence:
g(1) = -50 -15 = -65
g(2) = -50 -15(2) = -80
g(3) = -50 -15(3) = -95
The first term of the arithmetic sequence is -65, so that is g(1). Each next term is 15 less than the one before, so the recursive formula is ...
g(n) = g(n-1) -15
The complete recursive function definition requires both parts:
g(1) = -65
g(n) = g(n-1) -15