well, we know the ceiling is 6+2/3 high, and Eduardo has 4+1/2 yards only, how much more does he need, well, is simply their difference, let's firstly convert the mixed fractions to improper fractions and then subtract.
![\stackrel{mixed}{6\frac{2}{3}}\implies \cfrac{6\cdot 3+2}{3}\implies \stackrel{improper}{\cfrac{20}{3}} ~\hfill \stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{20}{3}-\cfrac{9}{2}\implies \stackrel{using ~~\stackrel{LCD}{6}}{\cfrac{(2\cdot 20)-(3\cdot 9)}{6}}\implies \cfrac{40-27}{6}\implies \cfrac{13}{6}\implies\blacktriangleright 2\frac{1}{6} \blacktriangleleft](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B6%5Cfrac%7B2%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B6%5Ccdot%203%2B2%7D%7B3%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B20%7D%7B3%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B20%7D%7B3%7D-%5Ccfrac%7B9%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Busing%20~~%5Cstackrel%7BLCD%7D%7B6%7D%7D%7B%5Ccfrac%7B%282%5Ccdot%2020%29-%283%5Ccdot%209%29%7D%7B6%7D%7D%5Cimplies%20%5Ccfrac%7B40-27%7D%7B6%7D%5Cimplies%20%5Ccfrac%7B13%7D%7B6%7D%5Cimplies%5Cblacktriangleright%202%5Cfrac%7B1%7D%7B6%7D%20%5Cblacktriangleleft)
Answer:
The probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
Step-by-step explanation:
Let <em>X</em> = the number of miles Ford trucks can go on one tank of gas.
The random variable <em>X</em> is normally distributed with mean, <em>μ</em> = 350 miles and standard deviation, <em>σ</em> = 10 miles.
If the Ford truck runs out of gas before it has gone 325 miles it implies that the truck has traveled less than 325 miles.
Compute the value of P (X < 325) as follows:

Thus, the probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
14. B (4, -2)
15. I am not exactly sure about this one but I would say either A or B.
Answer:
Collin
Step-by-step explanation:
He did the most attempts.
The probability of flipping a coin is 1/2
Answer:
Multiplicative Identity Property
Step-by-step explanation: