Answer:
Explanation:
From the position coordinates given , it appears that the ball moves simultaneously along x and y direction.
Displacement along x direction in one second = 4.4 - 1.8 = 2.6 m
So velocity along x direction V_x = 
Similarly velocity along y direction V_y(1) = 
In the next phase velocity changes both in x and y direction.
velocity in x - direction V_x(2) = [tex]\frac{2}{s}[/tex
Velocity in Y- direction V_y(2) = [tex]\frac{3.1}{s}[/tex
Acceleration in x direction = change of velocity in x direction
= ( 2 - 2.6 ) = -.6 m s⁻²
Acceleration in y direction = ( 3.1 - 2.6 ) = 0.5 m s⁻²
Total acceleration =\sqrt{( -.6 )² + ( .5 )²}
= .78 ms⁻²
Answer:
When the doctor has the syringe, it is full of air. So, now after the doctor pushes the plunger, hence the air gets released into the medicine container. After this the doctor then takes the plunger and pull it back. Now , the air gets pulled up back into the syringe, but not only does the air come in but also the medicine because of the pressure build up.
If my answer helped, please mark me as the brainliest!!
Thank You!
The answer is C. an electron in an orbit has a fixed energy.
Amplitude: the height of the wave<span>, measured in meters
</span><span>Wavelength: the distance between adjacent crests, measured in meters
</span>