Explanation:
(a) Formula to calculate the capacitance is as follows.

Now, putting the given values into the above formula as follows.


= 0.291
or,
= ln (0.291)
= -1.23
C = 0.729 F
Hence, the value of capacitance is 0.729 F.
(b) Formula to calculate the constant of circuit is as follows.
T =
= 
= 2.259 sec
Therefore, the time constant of the circuit is 2.259 sec.
Answer:
ytrxrddyoxswsdyxgxghfx
jdjdu3jthh
hhhujusbrnog
hhjfjtinrny
ykrjrhrnirjtjjtt
tkrjthr74uu3jt
hri4urjjrjtjjtjtjy
y
Explanation:
uueuhhhwuejroskanficndui39wn
jebfufkr
The original frequency of horn of Car A is 1071 Hz.
Explanation:
Doppler effect describes the change in the frequency of sound waves with respect to the observer. As the sound waves emitted from a source need to travel the air medium to reach observer, it will undergo loss in energy. So there will be change in its frequency compared to original frequency. Depending upon the direction of travel of source and observer the shifting of frequency will vary.

Here vo is the observer velocity and vs is the velocity of the source. So Vo = 15 m/s as car B is the observer and Vs = 35 m/s as car A is the source. And f is the frequency of sound wave at source that is car A.
Similarly, the doppler shift in frequency is the frequency of sound heard by car B which is f' = 1140 Hz. And v is the speed of sound that is v = 343 m/s
1140 = 
f = 1140/1.0649= 1071 Hz.
Thus, the original frequency of horn of Car A is 1071 Hz.
Answer: 0.306
Explanation:
from the question we are given the following
mass of sled (m) = 50 kg
force (f) = 1.75 x 10^2 N = 175 N
distance (s) = 6 m
net work done on the sled = 1.50 x 10 ^2 N = 150 N
acceleration due to gravity (g) = 9.8 m/s^2
coefficient of friction = μ
lets first calculate the frictional force (ff)
ff = μ x m x g = μ x 50 x 9.8 = 490 μ
work done on the slide by the applied force (W1)= f x s = 175 x 6 = 1050 j
work done on the slide by frictional force (W2) = ff x s = 490 μ x 6 = 2940μ j
now the net work done is the work done by the frictional force subtracted from the work done by the applied force
net work done = W1 - W2
150 = 1050 - 2940μ
2940μ = 1050 - 150
μ = 900 / 2940
μ = 0.306