1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna11 [192]
3 years ago
12

Two cars go around a banked curve at the proper speed for the banking angle. One car has tires with excellent traction, while th

e other car has bald slippery tires. Which of these cars is more likely to slide on the pavement as it goes around the curve?
Physics
1 answer:
arlik [135]3 years ago
8 0

Answer:

No car will slide

Explanation:

Neither car will slide because proper bank does not required frictional forces.  To prevent the car from traction through curve, a component of normal forces provides necessary centripetal forces. which prevent them to slide.

No car will slide since both car are going with the proper speed for given  banking angle

You might be interested in
Do you wont to be friends
Angelina_Jolie [31]

Answer:

shore

Explanation:

8 0
3 years ago
is it true that the composition of the atmosphere changes every few kilometers as you move away from earth
laiz [17]
Yes,it's true ok? So how have you been doing
5 0
3 years ago
What characteristic of a planet determines the acceleration due to gravity on it?
Korvikt [17]
The mass of a planet determines the acceleration due to gravity on it. This is according to Newton's Law of Gravitation, which basically states that the more mass a body has, the greater the force of attraction it exerts on other bodies with mass near it.

The gravitational force is:

F = GMm/r², where G is a constant, r is the distance between large mass M and small mass m.

Considering the fact that acceleration is force per unit mass, if we divide gravitational force by the small mass (to get force per unit mass), we see the dependence mathematically:

a = GM/r²
7 0
3 years ago
At constant volume, the heat of combustion of a particular compound is − 3550.0 kJ / mol. When 1.075 g of this compound ( molar
swat32

Answer:

C=1,25\cdot 10^{5} kJ/^{\circ}C

Explanation:

First of all let's define the specific molar heat capacity.

C = \frac{-Q}{n\cdot \Delta T} (1)

Where:

Q is the released heat by the system

n is the number of moles

ΔT is the difference of temperature of the system  

Now, we can find n with the molar mass (M) the mass of the compound (m).

n=\frac{m}{M}=6.95\cdot 10^{-3} moles      

Using (1) we have:

C=\frac{-3550}{6.95\cdot 10^{-3} 4.073}

C=1,25\cdot 10^{5} kJ/^{\circ}C

I hope it helps!

6 0
3 years ago
After driving a portion of the route, the taptap is fully loaded with a total of 27 people including the driver, with an average
lara [203]

Answer:

compression of spring is x = 0.12 m

Assumed k = 160,000 N/m ........ Truck's suspension system

Explanation:

Given:

- The mass of average person m_p = 69 kg

- Total number of persons n_p = 27

- The mass of each goat m_g = 15 kg

- The total number of goats n_g = 3

- The mass of each chicken m_c = 3 kg

- The total number of goats n_c = 5

- The total mass of bananas m_b = 25 kg

Find:

How much are the springs compressed?

Solution:

- Using equilibrium equation on the taptap in vertical direction:

                                 F_net = F_spring - F_weight = 0

- Compute the force due to all the weights on the taptap:

                                F_weight = (n_p*m_p + n_g*m_g + n_c*m_c + m_b)*9.81

                                F_weight = (69*27 + 3*15 + 5*3 + 25)*9.81  

                                F_weight = 19109.88 N

- The restoring force of a spring is given by:

                                F_spring = k*x

Where, k is the spring stiffness and x is the displacement:

                                 F_weight = F_spring

                                 19109.88 = k*x

                                 x = 19109.88 / k

We need to assume the spring stiffness we will take k = 160,0000 N/m (trucks suspension systems). The value of the stiffness must be high enough to sustain a load of 1.911 tonnes.

                                 x = 19109.88 / 160,000

                                 x = 0.1194 m ≈ 0.12 m = 12 cm

- A compression of 12 cm seems reasonable for a taptap to carry 1.911 tonnes of load. Hence, the assumption of spring stiffness was reasonable. Hence, the compression of spring is x = 0.12 m.

8 0
3 years ago
Other questions:
  • Susan drops her camera in the river from a bridge that 250 feet high. How long does it take the camera to fall 250 feet
    10·2 answers
  • A 5 kg block is being pulled to the right by a rope tied to it. the block is accelerating at 2 m/s2 to the right. how much force
    8·2 answers
  • An object is hung on the end of a vertical spring and is released from rest with the spring 3 unstressed. If the object falls 3.
    14·1 answer
  • g what are the bands of electromagneitc radiation and how are they related to energy frequency and wavelength
    9·1 answer
  • As a car heads down a highway traveling at a speed v away from a ground observer, which of the following statements are true abo
    7·1 answer
  • Find the net downward force on the tank's flat bottom, of area 1.60 m2 , exerted by the water and air inside the tank and the ai
    9·1 answer
  • A ball of mass m= 450.0 g traveling at a speed of 8.00 m/s impacts a vertical wall at an angle of θi =45.00 below the horizontal
    10·1 answer
  • Calculate the density of an object with a volume of 18m3 and a mass of 3.5kg?
    5·1 answer
  • A certain AM radio wave has a frequency of 24Hz. Given that radio waves travel at 3 m/s, what is the wavelength of this radio wa
    8·1 answer
  • A sub-woofer is a type of speaker which plays only the very low notes in a song or movie. Which of the following frequencies wou
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!