1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natka813 [3]
3 years ago
6

5. A projectile is fired in Earth's gravitational field with a horizontal velocity of y = 9.00 m/s.

Physics
1 answer:
aniked [119]3 years ago
3 0

Answer:

<h3>4.13m</h3>

Explanation:

Given

Horizontal velocity = 9.00m/s

time taken = 0.550 s

Required

How far does the projectile fall in the vertical direction

Using the formula for finding the maximum height of the projectile

H = U²sin²θ/2g where;

U = 9.00m/s

θ = 90° (object launched in the vertical direction)

g = 9.81m/s²

Substituting the given parameters into the formula;

H = 9²sin²90/2(9.81)

H = 81(1)/19.62

H = 81/19.62

H = 4.128 m

H ≈ 4.13m

Hence the distance that the projectile fall in the vertical direction is 4.13m

You might be interested in
The maximum tension that a 0.80 m string can tolerate is 15 N. A 0.35-kg ball attached to this string is being whirled in a vert
zimovet [89]

Answer:

v=5.86 m/s

Explanation:

Given that,

Length of the string, l = 0.8 m

Maximum tension tolerated by the string, F = 15 N

Mass of the ball, m = 0.35 kg

We need to find the maximum speed the ball can have at the top of the circle. The ball is moving under the action of the centripetal force. The length of the string will be the radius of the circular path. The centripetal force is given by the relation as follows :

F=\dfrac{mv^2}{r}

v is the maximum speed

v=\sqrt{\dfrac{Fr}{m}} \\\\v=\sqrt{\dfrac{15\times 0.8}{0.35}} \\\\v=5.86\ m/s

Hence, the maximum speed of the ball is 5.86 m/s.

3 0
3 years ago
When someone asked you if you have a special talent.
Nostrana [21]

Answer:

lowkeyyyy

explanation:

4 0
2 years ago
Read 2 more answers
A small ball of mass 2.00 kilograms is moving at a velocity 1.50 meters/second. It hits a larger, stationary ball of mass 5.00 k
rewona [7]

The kinetic energy of the small ball before the collision is

                             KE  =  (1/2) (mass) (speed)²

                                     = (1/2) (2 kg) (1.5 m/s)

                                     =    (1 kg)  (2.25 m²/s²)

                                     =        2.25 joules.

Now is a good time to review the Law of Conservation of Energy:

                     Energy is never created or destroyed. 
                     If it seems that some energy disappeared,
                     it actually had to go somewhere.
                     And if it seems like some energy magically appeared,
                     it actually had to come from somewhere.

The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision.  The large ball
and the small ball will just have to share the same 2.25 joules.

3 0
3 years ago
Explain the changes in energy as a ball is held in the air , and then dropped​
Nostrana [21]

Answer:

Potential Energy to Kenetic Energy

Explanation:

When holding a ball in the air, the ball has potential energy. Once you drop the ball, the ball gains Kenetic Energy

3 0
3 years ago
Why do the passengers in high-altitude jet planes feel the sensation of weight while passengers in an orbiting space vehicle, su
kykrilka [37]

Passengers in an aircraft are subject to the Normal and Gravity Force acting on them at a low 'orbit', so tiny that it can be many times compared to the same surface of the earth when speaking in general terms.

In a high orbit space vehicle or in the same space, said force decreases considerably or simply disappears, generating the sensation of weightlessness.

Remember that the Force of Gravity is given under the principle

F_g = \frac{GMm}{r^2}

Where,

G = Gravitational Universal constant

M = Mass of the planet

m = mass of the object

r = Distance from center of the planet

When the radius grows considerably the gravitational force begins to decrease.

7 0
2 years ago
Other questions:
  • Calculate the average speed of an automobile that travels 60km east and then 80km north in two hours
    9·1 answer
  • A man can swim with a speed of 5m/s in calm water. if this man swims crosses a specific river his speed is 3m/s. if he takes the
    15·1 answer
  • Why do electric field lines explain why like charges repel and opposite charges attract?
    13·1 answer
  • Alternative between running snd walking
    9·1 answer
  • What made the Fertile Crescent a good place for growing crops
    5·2 answers
  • 1pt The process by which rock minerals are changed by natural processes into new substances is known as:
    9·1 answer
  • What is the current in a circuit that has a resistance of 30.0 o and a power of 55.0 W?
    10·1 answer
  • PLEASE HELP!!! GIVING BRAINLIEST!! ill also answer questions that you have posted if you answer these correctly!!!! (30pts)
    15·1 answer
  • What keeps planets in our solar system?
    9·2 answers
  • if a car is accelerating downhill under a net force of 3674 N, what additional force would cause the car to have a constant velo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!