Answer:
CO
Explanation:
Henry's law constant reflects the solubility of a gas in water. The larger the kH, the more soluble is the gas. There is a rule that states that "like dissolves like", meaning polar is soluble in polar and nonpolar is soluble in nonpolar. Since water is polar, we have to consider the nature of these gases.
<em>Xe</em> nonpolar
<em>Cl₂</em> nonpolar
<em>CO</em> polar
<em>CO₂</em> nonpolar
<em>CH₃CH₃</em> nonpolar
CO is the only polar gas, so it has the largest kH.
They are called representative elements.
Answer:
See image attached for structure of CH3Br
Explanation:
A lewis structure structure is a representation of a covalent compound in which dots are used to show valence electrons, lone pairs and bonding electrons. The system was introduced by sir G.N Lewis in 1916 in his article titled 'Atom and Molecule'. They are also called dot electron diagrams of molecules. CH3Br molecule contains a total of fourteen electrons. Valence electrons are shown by dots around the atom of each element as clearly seen in the image attached.
Answer:
moles of ammonia produced = 0.28 moles
Explanation:
The reaction is

As per equation, one mole of nitrogen will react with three moles of hydrogen to give two moles of ammonia
So 0.140 moles of nitrogen will react with = 3 X 0.140 moles of Hydrogen
= 0.42 moles of hydrogen molecule.
this will give 2 X 0.140 moles of ammonia = 0.28 moles of ammonia
the moles of ammonia produced = 0.28 moles
Here the nitrogen is limiting reagent.
Answer:
A. 30cm³
Explanation:
Based on the chemical reaction:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
<em>1 mol of calcium carbonate reacts with 2 moles of HCl to produce 1 mol of CO₂</em>
<em />
To solve this question we must convert the mass of each reactant to moles. With the moles we can find limiting reactant and the moles of CO₂ produced. Using PV = nRT we can find the volume of the gas:
<em>Moles CaCO₃ -Molar mass: 100.09g/mol-</em>
1.00g * (1mol / 100.09g) = 9.991x10⁻³ moles
<em>Moles HCl:</em>
50cm³ = 0.0500dm³ * (0.05 mol / dm³) = 2.5x10⁻³ moles
For a complete reaction of 2.5x10⁻³ moles HCl there are necessaries:
2.5x10⁻³ moles HCl * (1mol CaCO₃ / 2mol HCl) = 1.25x10⁻³ moles CaCO₃. As there are 9.991x10⁻³ moles, HCl is limiting reactant.
The moles produced of CO₂ are:
2.5x10⁻³ moles HCl * (1mol CO₂ / 2mol HCl) = 1.25x10⁻³ moles CO₂
Using PV = nRT
<em>Where P is pressure = 1atm assuming STP</em>
<em>V volume in L</em>
<em>n moles = 1.25x10⁻³ moles CO₂</em>
<em>R gas constant = 0.082atmL/molK</em>
<em>T = 273.15K at STP</em>
<em />
V = nRT / P
1.25x10⁻³ moles * 0.082atmL/molK*273.15K / 1atm = V
0.028L = V
28cm³ = V
As 28cm³ ≈ 30cm³
Right option is:
<h3>A. 30cm³</h3>