The correct answer is gonna be C) A lithium cation ion is smaller
A lithium cation has lost its valence electrons, which causes the remaining electrons to be pulled in stronger by the positive charge in the nucleus. As they get closer to the nucleus, the overall size of the atom is decreased.
“About 300 kilometers across have irregular shapes because their internal gravity is not strong enough to compress the rock into a spherical shape” so I’m guessing it’s false ?
Iodine electron configuration is:
1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^10 4P^6 5S^2 4d^10 5P^5
when Krypton is the noble gas in the row above iodine in the periodic table,
we can change 1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^10 4P^6 by the symbol
[Kr] of Krypton.
So we can write the electron configuration of Iodine:
[Kr] 5S^2 4d^10 5P^5
Explanation:
1. Sedimentation and decantation cannot be used for all types of mixtures.
Decantation is a separation technique in which is used to separate immiscible liquids or mixtures containing liquid and solids within them.
In decantation, gravity is used to bring the denser materials to settle at the bottom.
For homogenous mixtures, it is not possible to use decantation. A solution of sugar and water will not decant.
2. Yes, mass of an object reduces the settling time of such object in a mixture.
The higher the mass, the faster the rate of settling. Also, as we know, mass is directly proportional to density. A body with a high density will settle faster in solution.