Answer:
(x-1)²+ (y-0.5)²=6.25
Step-by-step explanation:
<u>The standard form of equation of a circle is;</u>
(x-a)²+(y-b)²=r² where (a,b) are the center of the circle and r is the radius
<u>Finding the mid-point of the given points</u>
(-1,2) and (3,-1)⇒midpoint will be 1/2(x₁+x₂) , 1/2(y₁+y₂)
midpoint= {1/2(-1+3), 1/2(2+-1)}
midpoint=(1,0.5)
<u>Finding the radius r; the distance from the center to either of the given two points</u>
Apply the distance formula d=√ (x₂-x₁)² +(y₂-y₁)²
Taking (x₁,y₁) as (1,0.5) and (x₂,y₂) as (-1,2) then
d=√ (-1-1)² +(2-0.5)²
d= √ (-2)²+(1.5)²
d=√4+2.25⇒√6.25⇒2.5
r=2.5
<u>Equation of the circle</u>
(x-1)² + (y-0.5)²=2.5²
(x-1)²+ (y-0.5)²=6.25
333333.333333333333333333
:) lol
Answer:
Step-by-step explanation:
The wording on this is not the best. It sounds like the 1 zero has even multiplicity (that's because of where the modifier is). On top of that it has an odd power. You could try this. y =x*(x^2+1)^2
The problem is not with the power. It gives x^5. The problem is with the multiplicity of the one place where it crosses. (X^2 + 1) does factor, but it gives a complex root. I'm not sure that's allowed. However, it is the best I can do.
Hi there! The answer is D. range.
The range shows the difference between the largest and the smallest number, and the black arrow below the graph in the picture shows is this distance between the largest and the smallest number. Hence, the answer is range.