Usando la distribución binomial, hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
<h3>¿Qué es la distribución binomial?</h3>


Los parámetros son:
- n es el número de ensayos.
- p es la probabilidad de éxito en un ensayo
En este problema, hay que:
- 20% de los empleados de la población civil que está en una base militar restringida porta su identificación personal, o sea p = 0.2.
- Llegan 10 empleados, o sea, n = 10.
La probabilidad de que el guardia de seguridad encuentre al menos uno en la base militar restringida es dada por:

En que:


Por eso:

Hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
Puede-se aprender más a cerca de la distribución binomial en brainly.com/question/25132113
9514 1404 393
Answer:
83 m
Step-by-step explanation:
The attached diagram shows the lengths of the midlines to be 3.16 and 5.10 units on the coordinate plane. The sum of these is (3.16 +5.10) = 8.26 coordinate plane units. Since each unit on the coordinate plane represents 10 m, the total path length is about ...
8.26(10 m) = 82.6 m ≈ 83 m
_____
The distance formula will tell you the distances are ...
AC = √(3² +1²) = √10
BD = √(5² +1²) = √26
The total path length is about (10 m)(√10 +√26) ≈ 82.61230 m ≈ 83 m.
Answer:
The third option
Step-by-step explanation:
the most reasonable
Answer: 15 grams
If he had 100 grams of candy bar, then 30% of that is 30 grams (since 30/100 = 30%). Cut this in half and we end up with 30/2 = 15.
Another way to find the answer is to multiply 50 and 0.30 which is the decimal form of 30%. So we have 50*0.30 = 15 which is the same answer.
Adjacent angles<span> are two </span>angles<span> that have a common vertex and a common side.
<OPN and <TSP have a common side but do not have a common vertex.
<OPN and <RSU do not have a common side or a common vertex.
<OPN and <QPN are adjacent angles. They have a common side and a common vertex.
<OPN and <QPS have common vertex but do not have a common side.</span>