A number that would be rounded to 700 would be 695. if i'm wanting to round to the nearest hundred then i would look at the number behind the number i'm rounding so i would look at 9. 9 is 5 or more so we round up to 700.
<span />
Answer:
Slope = 
Step-by-step explanation:
(x₁ , y₁) = (-9 , -4) & (x₂ ,y₂) = (-3, -6)
Slope = 
![= \frac{-6-[-4]}{-3-[-9]}\\\\= \frac{-6+4}{-3+9}\\\\= \frac{-2}{6}\\\\= \frac{-1}{3}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B-6-%5B-4%5D%7D%7B-3-%5B-9%5D%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B-6%2B4%7D%7B-3%2B9%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B-2%7D%7B6%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B-1%7D%7B3%7D)
Answer:
Efectivamente, la suma de la medida de los ángulos internos de cualquier figura triangular es igual a 180º. Ahora bien, la oración posee un error de redacción, pues tanto los triángulos rectos como los equiláteros o los isósceles poseen dicha característica, es decir, no es únicamente una característica de los triángulos rectos. Además, la suma de los ángulos interiores de dos triángulos rectos sería igual a 360º, no a 180º.
It would be a > 12, move all terms to one side and then solve for x. make sure if you divide then you flip the term
Answer:
Parallel
<u>Step-By-Step Explanation:</u>
Put the Function in Slope Intercept Form and Find the Slope of 6x+3y = 15
6x+3y = 15
3y = -6x + 15
3y/3 = -6x/3 + 15/3
y = -2x + 5
<u>We can see that the slope of 6x+3y = 15 is -2</u>
Put the Function in Slope Intercept Form and Find the Slope of y–3=–2x
y–3=–2x
y = -2x + 3
Here are our two Functions In Slope Intercept Form
y = -2x + 5
y = -2x + 3
<u>Remember the m = slope and the b = y-intercept</u>
y = mx + b
y = -2x + 5
y = -2x + 3
------------------------------------------------------------------------------------------------------
We can see both equations have the same slope of -2 so this means they could be parallel because parallel functions have the same slope but coinciding functions have the same slope too. To tell if the two functions are coinciding, the functions need to have the same slope and the same y-intercept. Looking at the two functions, we can see they have the same slope of -2 but their y-intercept are different so this makes the two functions parallel.