The simplified rational expression is (y - 3)/(y + 3). Where y ≠ -3.
<h3>How to simplify a rational expression?</h3>
A rational expression is in the p/q form. Where p and q are polynomial functions.
To simplify this rational equation,
- Factorize the polynomials in both numerator and denomiantor.
- Cancel out common factors if any.
- If the denominator and the numerator have no common factors except 1, then that is said to be the simplest form of the given rational expression.
<h3>Calculation:</h3>
The given rational equation is

Factorizing the expression in the numerator:
y² - 12y + 27 = y² - 9y - 3y + 27
⇒ y(y - 9) - 3(y - 9)
⇒ (y - 3)(y - 9)
Factorizing the expression in the denominator:
y² - 6y - 27 = y² - 9y + 3y - 27
⇒ y(y - 9) + 3(y - 9)
⇒ (y + 3)(y - 9)
Since they have (y - 9) as the common factor, we can simplify,

⇒ (y - 3)/(y + 3) where y ≠ -3(denomiantor)
Here there are no more common factors except 1; this is the simplest form of the given rational expression.
Learn more about simplifying rational expressions here:
brainly.com/question/1928496
#SPJ9
Answer:
See explanation
Step-by-step explanation:
cos(θ)= 18/30 = 3/5
sin(θ)= 24/30 = 4/5
tan(θ)= 24/18 = 4/3
cos(ϕ)= 24/30 = 4/5
sin(ϕ)= 18/30 = 3/5
tan(ϕ)= 18/24 = 3/4
Answer:
A
Step-by-step explanation:
Answer:
P(A) = 44.44%
P(B) = 50%
P(B|A) = 37.5%
P(B|A) different from P(B).
A and B are independent.
Step-by-step explanation:
If we have a total of 180 students, and 80 of them have a Playstation, we have that P(A) = 80/180 = 0.4444 = 44.44%
If we have 90 students that have a Xbox, we have that P(B) = 90/180 = 0.5 = 50%
If we have 30 students that have both consoles, we have that P(A and B) = 30/180 = 0.1667 = 16.67%
To find P(B|A), we will find for a student that has an Xbox inside the group of students that has a Playstation, that is, we have 30 students in a total of 80 students, so P(B|A) = 30/80 = 0.375 = 37.5%
P(B|A) is different from P(B), the first is 37.5% and the second is 50%, so events A and B are independent events.