Step-by-step explanation:
the picture includes the answer and work
I plugged in 2 for x
the equations that got the same answer, I put together
Answer:
a) P(X∩Y) = 0.2
b) = 0.16
c) P = 0.47
Step-by-step explanation:
Let's call X the event that the motorist must stop at the first signal and Y the event that the motorist must stop at the second signal.
So, P(X) = 0.36, P(Y) = 0.51 and P(X∪Y) = 0.67
Then, the probability P(X∩Y) that the motorist must stop at both signal can be calculated as:
P(X∩Y) = P(X) + P(Y) - P(X∪Y)
P(X∩Y) = 0.36 + 0.51 - 0.67
P(X∩Y) = 0.2
On the other hand, the probability that he must stop at the first signal but not at the second one can be calculated as:
= P(X) - P(X∩Y)
= 0.36 - 0.2 = 0.16
At the same way, the probability that he must stop at the second signal but not at the first one can be calculated as:
= P(Y) - P(X∩Y)
= 0.51 - 0.2 = 0.31
So, the probability that he must stop at exactly one signal is:
I would say take 2 from eight which equals 6
Answer:
q = 18 ?
Step-by-step explanation:
This is not a complete question but ill give it a shot!
If we are following a pattern then we see q is 11 more than r.
So we do 11 + r (7) to get 18!
mark as brainliest