I pretty sure it’s a linear function
Answer:
Not a subspace
Step-by-step explanation:
(4,0,0) and (0,4,0) are vectors in R3 with zero or one entries being nonzero, but their sum, (4,4,0) has two nonzero entries.
Answer:

Step-by-step explanation:
By using the cos square identity in trigonometry i.e., cos2ϴ = 1 – sin2 ϴ, we can evaluate the exact value of cos(33 ). For calculating the exact value of cos(∏/6), we have to substitute the value of sin(30°) in the same formula.
cos(30°) = √1 – sin230°
The value of sin30° is 1/2 (Trigonometric Ratios)
cos(30°) = √1 – (1/2)2
cos(30°) = √1 – (1/4)
cos(30°) = √(1 * 4 – 1)/4
cos(30°) = √(4 – 1)/4
cos(30°) = √3/4
Therefore, cos(30°) = √3/2
Answer:

Step-by-step explanation:
By applying the concept of calculus;
the moment of inertia of the lamina about one corner
is:

where :
(a and b are the length and the breath of the rectangle respectively )


![I_{corner} = \rho [\frac{bx^3}{3}+ \frac{b^3x}{3}]^ {^ a} _{_0}](https://tex.z-dn.net/?f=I_%7Bcorner%7D%20%3D%20%20%5Crho%20%5B%5Cfrac%7Bbx%5E3%7D%7B3%7D%2B%20%5Cfrac%7Bb%5E3x%7D%7B3%7D%5D%5E%20%7B%5E%20a%7D%20_%7B_0%7D)
![I_{corner} = \rho [\frac{a^3b}{3}+ \frac{ab^3}{3}]](https://tex.z-dn.net/?f=I_%7Bcorner%7D%20%3D%20%20%5Crho%20%5B%5Cfrac%7Ba%5E3b%7D%7B3%7D%2B%20%5Cfrac%7Bab%5E3%7D%7B3%7D%5D)

Thus; the moment of inertia of the lamina about one corner is 
Answer:
I don't now this but you should do pemdas that really helped me
Step-by-step explanation:
The first step is perthansies then exponents and then multiplication then division and last addition and subtraction that should give you your answer.