Answer:
4. Composites have many non distinct prime factors, which are used more than once, such as 2,2,5,5 (the prime factors of every multiple of 100). What that means is that there can be two, three, four, or, in fact, infinitely many composite numbers that can have the same distinct prime factors.
Step-by-step explanation:
So, yes.
Answer:
27
Step-by-step explanation:
To find the fifth term substitute n = 5 into the rule, that is
= 5² + 2 = 25 + 2 = 27
Answer:
m ∠JPN = 131°
Step-by-step explanation:
m ∠JPL = m ∠MPK Vertical angles are =
7x + 19 = 11x -17 Substitution
- 4x = -36 Algebra: Solving for x
x = 9 Algebra: Solving for x
m ∠JPL = 82° Substitution x = 9 into m ∠JPL = 7x +19
m ∠JPL + m ∠LPK = 180° Definition of linear pair/supplement
angles = 180°
82° + m ∠LPK = 180° Substitution
m ∠LPK = 98° Algebra
m ∠LPK = m ∠LPN + m ∠NPK Angle addition Theorem
PN bisects ∠LPK Given
m ∠LPN = m ∠NPK Definition of angle bisector
98 ° = 2 ( m ∠LPN) Substitution
m ∠LPN = 49° Algebra
m ∠JPN = m ∠JPL + m ∠LPN Angle Addition
m ∠JPN = 82° + 49° Substitution
m ∠JPN = 131° Addition
Answer:
-4x^3 +12x^2 for 0 < x < 3
Step-by-step explanation:
The power rule is appropriate:
(d/dx)x^n = n·x^(n-1)
This is applied to each of the terms.
F'(x) = -(4·x^3) +4(3x^2) +0
F'(x) = -4x^3 +12x^2 . . . . for 0 < x < 3
__
The derivative is not defined at the endpoints of the interval, so F'(x) is only defined on (0, 3), not [0, 3].