We can solve this problem by calculating the individual rate of working and equate it to their total rate of working.
If Dave can complete a sales route in 4 hours, then his working rate is
![\frac{1}{4}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B4%7D%20)
Also, if James can do it in 5 hours, then his working rate is
![\frac{1}{5}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B5%7D%20)
Let
![x](https://tex.z-dn.net/?f=x)
be the hours that both will use to complete the sales route,
Then rate at which both completes this task is
![\frac{1}{x}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bx%7D%20)
Meaning if we add their individual rates we should get
![\frac{1}{x}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bx%7D%20)
That is;
![\frac{1}{4} + \frac{1}{5} = \frac{1}{x}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%5Cfrac%7B1%7D%7B5%7D%20%3D%20%5Cfrac%7B1%7D%7Bx%7D%20)
The LCM is
![20x](https://tex.z-dn.net/?f=20x)
So let us multiply through with the LCM.
![20x \times \frac{1}{4} + 20x \times \frac{1}{5} =20x \times \frac{1}{x}](https://tex.z-dn.net/?f=20x%20%5Ctimes%20%5Cfrac%7B1%7D%7B4%7D%20%2B%2020x%20%5Ctimes%20%5Cfrac%7B1%7D%7B5%7D%20%3D20x%20%5Ctimes%20%5Cfrac%7B1%7D%7Bx%7D%20)
![5x + 4x = 20](https://tex.z-dn.net/?f=5x%20%2B%204x%20%3D%2020)
We simplify to get,
![9x = 20](https://tex.z-dn.net/?f=9x%20%3D%2020)
Dividing through by 9 gives;
![x = \frac{20}{9}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B20%7D%7B9%7D%20)
![x = 2\frac{1}{9}](https://tex.z-dn.net/?f=x%20%3D%202%5Cfrac%7B1%7D%7B9%7D%20)
Therefore the two will complete sales route in
![2 \frac{1}{9}](https://tex.z-dn.net/?f=2%20%5Cfrac%7B1%7D%7B9%7D%20)
hours.