Answer:
Step-by-step explanation:
<em>The probability that a point chosen at random in the given figure will be inside the larger square and outside the smaller square</em> is equal to the ratio of the area of interest to the total area:
<em>P(inside larger square and outside smaller square)</em> = area of interest / total area
<em>P(inside larger square and outside smaller square)</em> = area inside the larger square and outside the smaller square / area of the larger square
<u>Calculations:</u>
<u />
1. <u>Area inside the larger square</u>: side² = (10 cm)² = 100 cm²
2. <u>Area inside the smaller square </u>= side² = (7cm)² = 49 cm²
3. <u>Area inside the larger square and outside the smaller square</u>
- 100 cm² - 49 cm² = 51 cm²
4.<u> P (inside larger square and outside smaller squere)</u>
- 51 cm² / 100 cm² = 51/100
<span>a2 – b2 = (a + b)(a – b) or (a – b)(a + b).
This is the 'Difference of Squares' formula we can use to factor the expression.
In order to use the </span><span>'Difference of Squares' formula to factor a binomial, the binomial must contain two perfect squares that are separated by a subtraction symbol.
</span><span>x^2 - 4 fits this, because x^2 and 4 are both perfect squares, and they are separated by a subtraction symbol.
All you do here to factor, is take the square root of each term.
√x^2 = x
√4 = 2
Now that we have our square roots, x and 2, we substitute these numbers into the form (a + b)(a - b).
</span>
<span>(a + b)(a - b)
(x + 2)(x - 2)
Our answer is final </span><span>(x + 2)(x - 2), which can also be written as (x - 2)(x + 2), it doesn't make a difference which order you put it in.
Anyway, Hope this helps!!
Let me know if you need help understanding anything and I'll try to explain as best I can.</span>
Answer:
yes it is
Step-by-step explanation:
that is a lap every 6 seconds .