The weight of an object is the product of its mass and the acceleration of gravity.
If g[e] is the acceleration of gravity on earth, and g[M] the same for Mars and g[m] the same for the moon,
then m[M]=m[e]g[M]/g[e] and m[m]=m[e]g[m]/g[e] where m[ ] denotes mass. Note that weight=mg (measured in newtons) while mass is in kilograms.
If g[M]=g[e]/3 and g[m]=g[e]/6 approximately. Then the weight of an object on Mars will be about a third of what it is on earth, while on the moon it would be about a sixth of what it is on earth.
It should be E) none of the above because:
height = 0.5
Radius = 1
diameter = 2
No because solids can't transmit heat by convection, and convection only works because of hotter and quicker moving molecules have a lower density so they rise to the surface. But in a solid, the molecules can't move relative to each other. They only vibrate :)
Answer:
polygons
Step-by-step explanation:
this is a hexagon so the sum of interior angles is 720. so add all of those angles and expressions and set it equal to 720. collect like terms and solve for x
once you have x, evaluate and get the exact angle measurements.
Answer:
Part A:
( 1.8333, -0.08333)
Part B:
x = 2 or x = 5/3
Step-by-step explanation:
The quadratic equation
has been given.
Part A:
We are required to determine the vertex. The vertex is simply the turning point of the quadratic function. We shall differentiate the given quadratic function and set the result to 0 in order to obtain the co-ordinates of its vertex.

Setting the derivative to 0;
6x - 11 = 0
6x = 11
x = 11/6
The corresponding y value is determined by substituting x = 11/6 into the original equation;
y = 3(11/6)^2 - 11(11/6) + 10
y = -0.08333
The vertex is thus located at the point;
( 1.8333, -0.08333)
Find the attached
Part B:
We can use the quadratic formula to solve for x as follows;
The quadratic formula is given as,

From the quadratic equation given;
a = 3, b = -11, c = 10
We substitute these values into the above formula and simplify to determine the value of x;
