For this case we have the following system of equations:

We observe that we have a quadratic equation and therefore the function is a parabola.
We have a linear equation.
Therefore, the solution to the system of equations will be the points of intersection of both functions.
When graphing both functions we have that the solution is given by:

That is, the line cuts the quadratic function in the following ordered pair:
(x, y) = (1, 2)
Answer:
the solution (s) of the graphed system of equations are:
(x, y) = (1, 2)
See attached image.
Step-by-step explanation:
-28÷4=2
-7=2
= -7-2
= -9 is the correct answer..
200% bc it went up 2x as much as it cost before
Uhhh i think the answers A
Answer:
<em>Any width less than 3 feet</em>
Step-by-step explanation:
<u>Inequalities</u>
The garden plot will have an area of less than 18 square feet. If L is the length of the garden plot and W is the width, the area is calculated by:
A = L.W
The first condition can be written as follows:
LW < 18
The length should be 3 feet longer than the width, thus:
L = W + 3
Substituting in the inequality:
(W + 3)W < 18
Operating and rearranging:

Factoring:
(W-3)(W+6)<0
Since W must be positive, the only restriction comes from:
W - 3 < 0
Or, equivalently:
W < 3
Since:
L = W + 3
W = L - 3
This means:
L - 3 < 3
L < 6
The width should be less than 3 feet and therefore the length will be less than 6 feet.
If the measures are whole numbers, the possible dimensions of the garden plot are:
W = 1 ft, L = 4 ft
W = 2 ft, L = 5 ft
Another solution would be (for non-integer numbers):
W = 2.5 ft, L = 5.5 ft
There are infinitely many possible combinations for W and L as real numbers.