Without any ionization, the element (Cn) would have 112 electrons because the atomic number of an element is the number of protons the element has and a neutral element has the same number of electrons as it does protons.
Answer:
N2O2(g) +O2(g) ===> 2NO2(g)
Explanation:
For a nonelementary reaction, the reaction equation is described as the sum of all the steps involved. All these steps constitute the reaction mechanism. Each step in the mechanism is an elementary reaction. The rate law of the overall reaction involves the rate determining step (slowest step) in the reaction sequence.
Now look at the overall reaction 2NO(g) + O2(g) ---------> 2NO2(g)
The two steps in the mechanism are
2NO(g) --------->N2O2(g) (fast)
N2O2(g) +O2(g) -------> 2NO2(g) (slow)
Summing all the steps and cancelling out the intermediate N2O2(g), we obtain the reaction equation;
2NO(g) + O2(g) ---------> 2NO2(g)
Hence the answer.
just divide the mass 49.2 grams by the amount of gummi bears 23 to get the answer of 2.1391 then it says to round to 2 decimals so 2.14 grams
Answer: I & III
Explanation: Solutes are the substances which are minimum in quantity and which is required to dissolve in the solvent (which is larger in quantity) in order to make a solution.
In the asked question, it is given that the water is the solvent and from the given solutes we have to pick which would make an aqueous solution with the highest concentration of solute possible.
Thus the most appropriate answers could be the Ammonia and hexanol which can make the highest possible concentration of solute as ammonia is the gas which is highly soluble in water and hexanol is an alcohol which has an affinity for water. Thus the correct option is I & III
Answer:
The enthalpy change in the the reaction is -47.014 kJ/mol.
Explanation:

Volume of water in calorimeter = 22.0 mL
Density of water = 1.00 g/mL
Mass of the water in calorimeter = m

Mass of substance X = 2.50 g
Mass of the solution = M = 2.50 g + 22 g = 24.50 g
Heat released during the reaction be Q
Change in temperature =ΔT = 28.0°C - 14.0°C = 14.0°C
Specific heat of the solution is equal to that of water :
c = 4.18J/(g°C)


Heat released during the reaction is equal to the heat absorbed by the water or solution.
Heat released during the reaction =-1.433 kJ
Moles of substance X= 
The enthalpy change, ΔH, for this reaction per mole of X:
