Answer:
Step-by-step explanation:
2(x + 2)/3 = 6
multiply by : 3
2(x + 2) = 18
2x+4 = 18
2x = 18-4=14
x=14/2
x=7
Answer:
Step-by-step explanation:
Given that:
The equation of the damped vibrating spring is y" + by' +2y = 0
(a) To convert this 2nd order equation to a system of two first-order equations;
let y₁ = y
y'₁ = y' = y₂
So;
y'₂ = y"₁ = -2y₁ -by₂
Thus; the system of the two first-order equation is:
y₁' = y₂
y₂' = -2y₁ - by₂
(b)
The eigenvalue of the system in terms of b is:




(c)
Suppose
, then λ₂ < 0 and λ₁ < 0. Thus, the node is stable at equilibrium.
(d)
From λ² + λb + 2 = 0
If b = 3; we get

Now, the eigenvector relating to λ = -1 be:
![v = \left[\begin{array}{ccc}+1&1\\-2&-2\\\end{array}\right] \left[\begin{array}{c}v_1\\v_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]](https://tex.z-dn.net/?f=v%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%2B1%261%5C%5C-2%26-2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dv_1%5C%5Cv_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
![\sim v = \left[\begin{array}{ccc}1&1\\0&0\\\end{array}\right] \left[\begin{array}{c}v_1\\v_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Csim%20v%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C0%260%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dv_1%5C%5Cv_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let v₂ = 1, v₁ = -1
![v = \left[\begin{array}{c}-1\\1\\\end{array}\right]](https://tex.z-dn.net/?f=v%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-1%5C%5C1%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let Eigenvector relating to λ = -2 be:
![m = \left[\begin{array}{ccc}2&1\\-2&-1\\\end{array}\right] \left[\begin{array}{c}m_1\\m_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]](https://tex.z-dn.net/?f=m%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%5C%5C-2%26-1%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dm_1%5C%5Cm_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
![\sim v = \left[\begin{array}{ccc}2&1\\0&0\\\end{array}\right] \left[\begin{array}{c}m_1\\m_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Csim%20v%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%5C%5C0%260%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dm_1%5C%5Cm_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let m₂ = 1, m₁ = -1/2
![m = \left[\begin{array}{c}-1/2 \\1\\\end{array}\right]](https://tex.z-dn.net/?f=m%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-1%2F2%20%5C%5C1%5C%5C%5Cend%7Barray%7D%5Cright%5D)
∴
![\left[\begin{array}{c}y_1\\y_2\\\end{array}\right]= C_1 e^{-t} \left[\begin{array}{c}-1\\1\\\end{array}\right] + C_2e^{-2t} \left[\begin{array}{c}-1/2\\1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dy_1%5C%5Cy_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%3D%20C_1%20e%5E%7B-t%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-1%5C%5C1%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%2B%20C_2e%5E%7B-2t%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-1%2F2%5C%5C1%5C%5C%5Cend%7Barray%7D%5Cright%5D)
So as t → ∞
First of all, I like the name "westside" for a bakery. :)
OK, so, you can make a proportion for this problem.
440 lbs.= 1000 cakes.
? unknown = 1 cake.
440 divided by 1000 = 0.44 pounds
Answer:
185
Step-by-step explanation:
cause if you add up 80+65+40 right?
For translations like this use the formula:
f(x) = (x - h)² + k
where h is the lateral movement/shifts on the x-axis and k is the vertical movement/shifts on the y-axis.
Since g(x) is a movement to the right 4 units and up 9 units, your h is a positive 4 and k is a 9:
g(x) = (x - 4)² + 9Here's a picture of your original graph f(x) and your translation g(x)