Answer
The answer and procedures of the exercise are attached in the following archives.
Step-by-step explanation:
You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.
Answer: 0.2m sqr
Explanation:
A well behaved aircraft basically have a value of volume in horizontal and vertical area.
Volume in horizontal area (Vh) = 0.6
Volume in vertical area (Vv) = 0.05
Having known this, consider the relationship to find the vertical and horizontal tail sizes.
Vertical tail area (Sv)
Horizontal tail area (Sh)
Vh= (Sh × I) / S
Where,
I = moment
S= wing area
Sh= Horizontal tail area
Vh= Volume in horizontal area
0.6= Sh × 10/40
24= 10Sh
Sh= 24/10
Sh= 2.4 msqr
Horizontal tail area= 2.4m sqr
From the information above, we can calculate the vertical tail area.
Vertical tail area is calculated thus below:
Vv= (Sv× I) / S
Where
Vv= Volume in vertical area
Sv= Vertical tail area
I= Moment
S= Wing area
Therefore
Sv= (Vv × S) /I
Sv= (0.05×40)/10
Sv= 0.2msqr
In conclusion, the vertical tail size is 0.2msqr
Answer: hello attached below is the missing image the slender weight is different from what is in the question here so I worked with 23-Ib as requested in the question
answer
≈ 12.17 Rad/sec
Explanation:
weight of bullet ( Wb ) = 0.08 Ib
horizontal velocity = 1800 ft/s
Slender(Wr) = 23-Ib bar with
length ( L ) = 30
h = 12 inches
Vro = 0
<u>Calculate the angular velocity of the bar immediately after the bullet becomes embedded </u>
attached below is a detailed solution
6.708 = ( 0.05011 + 0.5011 ) w'
w' = 6.708 / 0.55121 ≈ 12.17 Rad/sec
Answer:
<h2>The answer is FALSE</h2>
Explanation:
Brittle material are materials that don not undergo plastic deformation, they have very low plasticity that is while cracks can form without plastic deformation
The major/ common examples are glass, ceramics, graphite
In other words brittle materials break instead of bending, they have very low energy absorption as they don not undergo plastic deformation
Answer:
P1+1/2pv2/1+pgh1=P2+1/2pv2/2+pgh2