Answer:
The availability of system will be 0.9
Explanation:
We have given mean time of failure = 900 hours
Mean time [to repair = 100 hour
We have to find availability of system
Availability of system is given by 
So availability of system 
So the availability of system will be 0.9
Answer:
Please see the attached file for the complete answer.
Explanation:
The maximum volume flow rate of water is determined as 0.029 m³/s.
<h3>Power of the pump</h3>
The power of the pump is watt is calculated as follows;
1 hp = 745.69 W
7 hp = ?
= 7 x 745.69 W
= 5,219.83 W
<h3>Mass flow rate of water</h3>
η = mgh/P
mgh = ηP
m = ηP/gh
m = (0.82 x 5,219.83)/(9.8 x 15)
m = 29.12 kg/s
<h3>Maximum volume rate</h3>
V = m/ρ
where;
- ρ is density of water = 1000 kg/m³
V = (29.12)/(1000)
V = 0.029 m³/s
Learn more about volume flow rate here: brainly.com/question/21630019
#SPJ12
Explanation:
Precision machining is a subtractive process used in cases where material needs to be removed from a raw product to create the finished product. Precision machining can be used to create a wide variety of products, items, and parts for any number of different objects and materials. These parts usually require tight tolerances variation from nominal dimensions and from part to part, which means that there is not much room for error in the production of the piece. Repeatability and well-controlled tolerances are hallmarks of precision machining. Components, parts and finished durable products that are designed to maintain extremely tight tolerance margins and a high degree of durability are essential and common drivers for utilization of precision machining. For example, parts that need to work together as part of a machine may need to always align within a certain margin of 0.01mm to 0.05mm. Precision engineering and machining help to ensure these parts can not only be made precisely but can be produced with this level of accuracy over and over again.
Explanation:
There are 8.35 pounds in a gallon of water. Water weighs 1 gram per cubic centimeter or 1 000 kilogram per cubic meter, i.e. density of water is equal to 1 000 kg/m³; at 25°C (77°F or 298.15K) at standard atmospheric pressure.