Answer:
B. 12
Step-by-step explanation:
✔️Find the value of x
The side lengths of two similar triangles are always proportional.
Given that ∆ABC ~ ∆LMN, therefore:

AB = 5
LM = 10
AC = x + 5
LN = 3x + 3
Plug in the values

Cross multiply

(distributive property)
Collect like terms
Divide both sides by 5
x = 7
✔️Find AC
AC = x + 5
Plug in the value of x
AC = 7 + 5
AC = 12
Answer: "...in descending order."
There you go.
Answer:
<h2>
![7 \sqrt[3]{2x} - 6 \sqrt[3]{2x} - 6x](https://tex.z-dn.net/?f=7%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206x)
</h2>
Solution,
![7( \sqrt[3]{2x} ) - 3( \sqrt[3]{16x} ) - 3( \sqrt[3]{8x} ) \\ = 7 \sqrt[3]{2x} - 3 \times ( \sqrt[3]{2 \times 2 \times 2 \times 2x} - 3 \times \sqrt[3]{2 \times 2 \times 2x} \\ = 7 \sqrt[3]{2x} - 3 \times (2 \sqrt[3]{2} x) - 3 \times 2x \\ = 7 \sqrt[3]{2x} - 3 \times 2 \times \sqrt[3]{2x} - 3 \times 2x \\ = 7 \sqrt[3]{2x} - 6 \sqrt[3]{2x} - 6x](https://tex.z-dn.net/?f=7%28%20%5Csqrt%5B3%5D%7B2x%7D%20%29%20-%203%28%20%5Csqrt%5B3%5D%7B16x%7D%20%29%20-%203%28%20%5Csqrt%5B3%5D%7B8x%7D%20%29%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%20%28%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202x%7D%20%20-%203%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202x%7D%20%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%20%282%20%5Csqrt%5B3%5D%7B2%7D%20x%29%20-%203%20%5Ctimes%202x%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%202%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%202x%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206x)
Hope this helps...
Good luck on your assignment...
Answer:
24 boxes, 1 chocolate remaining
Step-by-step explanation:
289 chocolates total, each box is 12.
just divide it and whatever is left will be your remainder.
289/12 = 24 boxes, 1 chocolate remaining
sub to gauthmath sub reddit for more help like this !
Answer:
1 to 5
Step-by-step explanation:
Others are saying 5 to 1