Answer:
i cant see your pic
Step-by-step explanation:
Answer:20
Step-by-step explanation:
Answer:
The answer is 36.) Orange and 37.) Purple
Step-by-step explanation:
Hope this helps : )
9514 1404 393
Answer:
x = 12
Step-by-step explanation:
We can find x using either the measure of angle B, or the measure of angle A.
Using A, we have ...
48 = x^2 -8x
Adding 16 completes the square:
64 = x^2 -8x +16 = (x -4)^2
Then the positive solution is ...
√64 = x -4
x = 4 +8 = 12
The triangles are similar when x=12.
__
<em>Check</em>
We expect angle B to be 84° when x=12:
(x^2 -5x) = x(x -5) = 12(7) = 84 . . . . as needed
Note that x² + 2x + 3 = x² + x + 3 + x. So your integrand can be written as
<span>(x² + x + 3 + x)/(x² + x + 3) = 1 + x/(x² + x + 3). </span>
<span>Next, complete the square. </span>
<span>x² + x + 3 = x² + x + 1/4 + 11/4 = (x + 1/2)² + (√(11)/2)² </span>
<span>Also, for the x in the numerator </span>
<span>x = x + 1/2 - 1/2. </span>
<span>So </span>
<span>(x² + 2x + 3)/(x² + x + 3) = 1 + (x + 1/2)/[(x + 1/2)² + (√(11)/2)²] - 1/2/[(x + 1/2)² + (√(11)/2)²]. </span>
<span>Integrate term by term to get </span>
<span>∫ (x² + 2x + 3)/(x² + x + 3) dx = x + (1/2) ln(x² + x + 3) - (1/√(11)) arctan(2(x + 1/2)/√(11)) + C </span>
<span>b) Use the fact that ln(x) = 2 ln√(x). Then put u = √(x), du = 1/[2√(x)] dx. </span>
<span>∫ ln(x)/√(x) dx = 4 ∫ ln u du = 4 u ln(u) - u + C = 4√(x) ln√(x) - √(x) + C </span>
<span>= 2 √(x) ln(x) - √(x) + C. </span>
<span>c) There are different approaches to this. One is to multiply and divide by e^x, then use u = e^x. </span>
<span>∫ 1/(e^(-x) + e^x) dx = ∫ e^x/(1 + e^(2x)) dx = ∫ du/(1 + u²) = arctan(u) + C </span>
<span>= arctan(e^x) + C.</span>