cos θ = Adjacent/ hypotenuse
cosθ= 5/13
a²+b²= c²
a² + 5² = 13²
a² = 13² - 5²
a² = 144
a=√144
a= 12
<u>a</u> is the opposite = 12
<u>b</u> is the Adjacent = 5
<u>c</u> is the hypotenuse = 13
a) tan θ= opposite/Adjacent
tan θ = 12/5
b) sin θ= opposite/ hypotenuse
sinθ= 12/13
C) sec θ= hypotenuse / Adjacent
sec θ= 13/5
d) cscθ= hypotenuse /opposite
cscθ= 13/12
e) cotθ=Adjacent/ opposite
cotθ= 5/12
Consider this option (see the attachment).
Note, that the formula (a+b)²=a²+2ab+b² is used.