1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
4 years ago
8

A rectangular field will be fenced on all four sides. There will also be a line of fence across the field, parallel to the short

er side. If 900 meters of fencing are available, what dimensions of the fiels will produce the maximum area? What is the maximum area?​
Mathematics
1 answer:
Dimas [21]4 years ago
3 0

Answer:

150m by 300 m

Step-by-step explanation:

150×300=45000

all sides add up to 900m

150+150+300+300

You might be interested in
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
ANSWER IT CORRECTLY FOR BRAINLIEST Amelia built a scale model of a float, using the scale 48:7. The measurements of the actual f
Rashid [163]

Answer:

The third one :)                          

Step-by-step explanation:

6 0
3 years ago
What is the rate of change between the interval of x = 3 pi over 2 and x = 2π?
galina1969 [7]
Check the picture below.

\bf slope = m = \cfrac{rise}{run} \implies &#10;\cfrac{ f(x_2) - f(x_1)}{ x_2 - x_1}\impliedby &#10;\begin{array}{llll}&#10;average~rate\\&#10;of~change&#10;\end{array}\\\\&#10;-------------------------------\\\\&#10;\begin{cases}&#10;x_1=\frac{3\pi }{2}\\&#10;x_2=2\pi &#10;\end{cases}\implies \cfrac{f(2\pi )-f\left( \frac{3\pi }{2} \right)}{2\pi -\frac{3\pi }{2} }\implies \cfrac{3-1}{\frac{4\pi -3\pi }{2}}\implies \cfrac{2}{\quad \frac{\pi}{2}\quad }\implies \cfrac{4}{\pi }

5 0
3 years ago
Read 2 more answers
Which of the following is a 1. repeating decimal?<br> 1. 14/7<br> 2. 9/6<br> 3. 1/4<br> 4. 5/9
Amanda [17]

Answer:

9/6

Step-by-step explanation:

1/4 is less than 1, so its not 1. 5/9 is also less than 1, so its also not 1. 14 divided by 7 equals 2 so that is not 1. 9/6 is the only option left :)

3 0
3 years ago
What happens when you celebrate halloween in the spring
kirill [66]

Answer:

the day that immediately proceeds the last and final spring sabbat, ... The fact that Beltane and Samhain happen in unison twice a year lends

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Simplify 7(3y-5)+2(4y+3)
    12·2 answers
  • Find the product. −2 (3.1) lol another
    7·2 answers
  • I'm getting two different answers while I'm helping my lil sister out, could anybody help? It's
    10·1 answer
  • A sample is BEST defined as _________.
    6·1 answer
  • Help me for 1 year of being cool
    13·1 answer
  • Please help out before 8pm !!
    5·1 answer
  • Look at the graph and tell me why it is proportional or nonproportional and why?
    12·1 answer
  • Helpp!!!
    10·1 answer
  • 729 ÷ 0.9<br>Do the solution<br>If its right i will make<br>You the brainliest
    14·1 answer
  • A, B &amp; C form the vertices of a triangle.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!