Answer:
The stirring allows fresh solvent molecules to continually be in contact with the solute.
The weight of the balloon is irrelevant because it is the gas that lifts it in the air. We are already given with the required volume, so we use this instead. The atomic weight of zinc is 65.38 g/mol. Assuming ideal gas behavior,
PV=nRT
P(475 mL)(1 L/1000 mL) = (1.85/65.38)(0.0821 L·atm/mol·K)(21.5 + 273)
P = 1.44 atm
Then, we use this pressure and the volume to find the moles of zinc.
(1.44 atm)(475 mL+1 mL)(1 L/1000 mL) = n(0.0821 L·atm/mol·K)(21.5 + 273)
Solving for n,
<em>n = 0.02836 moles of zinc</em>
Answer:
molarity = 0.385 moles/kg
Explanation:
Assume that the volume of the aqueous solution given is 1 liter = 1000 ml
Now, density can be calculated using the following rule:
density = mass / volume
Therefore:
mass = density * volume = 1.23 * 1000 = 1230 grams
Now, 0.467 m/L * 1L = 0.467 moles of HCl
We will get the mass of the 0.467 moles of HCl as follows:
mass = molar mass * number of moles = (1+35.5)*0.467 = 17.0455 grams
Now, we have the mass of the solution (water + HCl) calculated as 1230 grams and the mass of the HCl calculated as 17.0455 grams. We can use this information to get the mass of water as follows:
mass of water = 1230 - 17.0455 = 1212.9545 grams
Finally, we will get the molarity as follows:
molarity = number of moles of solute / kg of solution
molarity = (0.467) / (1212.9594*10^-3)
molarity = 0.385 mole/kg
Hope this helps :)