Answer:
where's the table. on és la taula?
Step-by-step explanation:
Answer:
-x¹⁴ / 5040
-½ < x < ½
Step-by-step explanation:
f(x) = e^(-x²)
The Taylor series for eˣ centered at 0 is:
eˣ = ∑ (1/n!) xⁿ
Substitute -x²:
e^(-x²) = ∑ (1/n!) (-x²)ⁿ
e^(-x²) = ∑ (1/n!) (-1)ⁿ x²ⁿ
The 14th degree term occurs at n=7.
(1/7!) (-1)⁷ x¹⁴
-x¹⁴ / 5040
ln(1 + x) = ∑ₙ₌₁°° (-1)ⁿ⁺¹ xⁿ / n
If we substitute 4x²:
ln(1 + 4x²) = ∑ₙ₌₁°° (-1)ⁿ⁺¹ (4x²)ⁿ / n
Using ratio test:
lim(n→∞)│aₙ₊₁ / aₙ│< 1
lim(n→∞)│[(-1)ⁿ⁺² (4x²)ⁿ⁺¹ / (n+1)] / [(-1)ⁿ⁺¹ (4x²)ⁿ / n]│< 1
lim(n→∞)│-1 (4x²) n / (n+1)│< 1
4x² < 1
x² < ¼
-½ < x < ½
8x - 2y = 48, y =4
8x - 2(4) = 48
8x - 8 = 48
8x = 48+8
8x = 56
x = 56/8 = 7
x = 7
Answer:
Jamie is correct
Step-by-step explanation:
Jamie is correct.
Example: isosceles triangle ABC AB=AC
∠B = ∠C ∠A + ∠B + ∠C = 180°
if ∠A = x ∠B = ∠C = 1/2 * ( 180° - x)
if ∠B or ∠C = x ∠A = 180° - 2x