Informally, the domain is the set of all possible elements in a set for which there is one and only one output. In interval notation, the domain is (-4, ∞). I am assuming it continues on infinitely to the right because of the arrow. The range is [1, <span>∞). Here, you choose the lowest value on the graph, up to the highest one.</span>
The circumference of a DVD disc is 28.26 cm
Answer:
-5
Step-by-step explanation:
Hello!
Simplifying
5x2 + -7x + -3 = 8
Reorder the terms:
-3 + -7x + 5x2 = 8
Solving
-3 + -7x + 5x2 = 8
Solving for variable 'x'.
Reorder the terms:
-3 + -8 + -7x + 5x2 = 8 + -8
Combine like terms: -3 + -8 = -11
-11 + -7x + 5x2 = 8 + -8
Combine like terms: 8 + -8 = 0
-11 + -7x + 5x2 = 0
Begin completing the square. Divide all terms by
5 the coefficient of the squared term:
Divide each side by '5'.
-2.2 + -1.4x + x2 = 0
Move the constant term to the right:
Add '2.2' to each side of the equation.
-2.2 + -1.4x + 2.2 + x2 = 0 + 2.2
Reorder the terms:
-2.2 + 2.2 + -1.4x + x2 = 0 + 2.2
Combine like terms: -2.2 + 2.2 = 0.0
0.0 + -1.4x + x2 = 0 + 2.2
-1.4x + x2 = 0 + 2.2
Combine like terms: 0 + 2.2 = 2.2
-1.4x + x2 = 2.2
The x term is -1.4x. Take half its coefficient (-0.7).
Square it (0.49) and add it to both sides.
Add '0.49' to each side of the equation.
-1.4x + 0.49 + x2 = 2.2 + 0.49
Reorder the terms:
0.49 + -1.4x + x2 = 2.2 + 0.49
Combine like terms: 2.2 + 0.49 = 2.69
0.49 + -1.4x + x2 = 2.69
Factor a perfect square on the left side:
(x + -0.7)(x + -0.7) = 2.69
Calculate the square root of the right side: 1.640121947
Break this problem into two subproblems by setting
(x + -0.7) equal to 1.640121947 and -1.640121947.
Subproblem 1
x + -0.7 = 1.640121947
Simplifying
x + -0.7 = 1.640121947
Reorder the terms:
-0.7 + x = 1.640121947
Solving
-0.7 + x = 1.640121947
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '0.7' to each side of the equation.
-0.7 + 0.7 + x = 1.640121947 + 0.7
Combine like terms: -0.7 + 0.7 = 0.0
0.0 + x = 1.640121947 + 0.7
x = 1.640121947 + 0.7
Combine like terms: 1.640121947 + 0.7 = 2.340121947
x = 2.340121947
Simplifying
x = 2.340121947
Subproblem 2
x + -0.7 = -1.640121947
Simplifying
x + -0.7 = -1.640121947
Reorder the terms:
-0.7 + x = -1.640121947
Solving
-0.7 + x = -1.640121947
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '0.7' to each side of the equation.
-0.7 + 0.7 + x = -1.640121947 + 0.7
Combine like terms: -0.7 + 0.7 = 0.0
0.0 + x = -1.640121947 + 0.7
x = -1.640121947 + 0.7
Combine like terms: -1.640121947 + 0.7 = -0.940121947
x = -0.940121947
Simplifying
x = -0.940121947
Solution
The solution to the problem is based on the solutions
from the subproblems.
x = {2.340121947, -0.940121947}
Answer:
Option A.
Step-by-step explanation:
Graph of function has been given in the figure.
Coordinates of the points lying on this graph will be
x -2 -1 0 1 2
y -10 -3 -2 -1 6
Therefore, coordinates of the points which will lie on the inverse of this function will be
x -10 -3 -2 -1 6
y -2 -1 0 1 2
Therefore, Option A. will be the answer.