1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zavuch27 [327]
3 years ago
15

The fastest car on Earth, a German-made Thrust SSC, would win every NASCAR race in America. If it takes 30 minutes to travel 380

miles, what is its speed?
Mathematics
1 answer:
baherus [9]3 years ago
7 0
760 MPH...............
You might be interested in
Justify the congruence between each of the following pairs of triangle.​
Fantom [35]

Answer:

Refer to the attachment for the labelling of the triangles.

In △ABC & △PQR,

∠A = ∠R (equal pair of angles)

∠B = ∠Q (equal pair of angles)

AC = PR (equal pair of sides)

•°• △ABC ≅ △RQP (Angle-Angle-Side congruence property → AAS property)

Hope it helps ⚜

5 0
3 years ago
Suppose that the functions p and q are defined as follows.p(x) = -2x + 1q(x)=-x?Find the following.
MariettaO [177]

First let us find

(q\mathrm{}p)(x)\begin{gathered} q(p(x))=q(-2x+1) \\ =-(-2x+1)^2 \\ So\text{ } \\ (q\mathrm{}p)(5)=-(-2\times5+1)^2 \\ =-(9)^2 \\ =-81 \end{gathered}

Now let;s solve the second part

\begin{gathered} (p\mathrm{}q)(x)=p(q(x)) \\ =p(-x^2) \\ =-2(-x^2)+1 \\ =2x^2+1 \\ So\text{ (p.q)(5) will be } \\ (p\mathrm{}q)(5)=2(5)^2+1 \\ =51 \end{gathered}

6 0
1 year ago
The positive acute angle formed by the _____ side of an angle in standard position and the x-axis is called a reference angle.
Helga [31]

Answer:

option-C

terminal

Step-by-step explanation:

We know that

reference angle is between terminal side and x-axis

so, the other side will be terminal position

so, we can write as

The positive acute angle formed by the <u>terminal</u> side of an angle in standard position and the x-axis is called a reference angle.

So,

option-C

terminal

7 0
4 years ago
Help please i will mark brainlyy
skelet666 [1.2K]

Answer:

x =(-4+√88)/12=-1/3+1/6√ 22 = 0.448

x =(-4-√88)/12=-1/3-1/6√ 22 = -1.115

Step-by-step explanation:

x =(-4-√88)/12=-1/3-1/6√ 22 = -1.115

x =(-4+√88)/12=-1/3+1/6√ 22 = 0.448

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "x2"   was replaced by   "x^2".  

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 ((2•3x2) +  4x) -  3  = 0  

Step  2  :

Trying to factor by splitting the middle term

2.1     Factoring  6x2+4x-3  

The first term is,  6x2  its coefficient is  6 .

The middle term is,  +4x  its coefficient is  4 .

The last term, "the constant", is  -3  

Step-1 : Multiply the coefficient of the first term by the constant   6 • -3 = -18  

Step-2 : Find two factors of  -18  whose sum equals the coefficient of the middle term, which is   4 .

     -18    +    1    =    -17  

     -9    +    2    =    -7  

     -6    +    3    =    -3  

     -3    +    6    =    3  

     -2    +    9    =    7  

     -1    +    18    =    17  

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Equation at the end of step  2  :

 6x2 + 4x - 3  = 0  

Step  3  :

Parabola, Finding the Vertex :

3.1      Find the Vertex of   y = 6x2+4x-3

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 6 , is positive (greater than zero).  

Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions.  

Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex.  

For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is  -0.3333  

Plugging into the parabola formula  -0.3333  for  x  we can calculate the  y -coordinate :  

 y = 6.0 * -0.33 * -0.33 + 4.0 * -0.33 - 3.0

or   y = -3.667

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 6x2+4x-3

Axis of Symmetry (dashed)  {x}={-0.33}  

Vertex at  {x,y} = {-0.33,-3.67}  

x -Intercepts (Roots) :

Root 1 at  {x,y} = {-1.12, 0.00}  

Root 2 at  {x,y} = { 0.45, 0.00}  

Solve Quadratic Equation by Completing The Square

3.2     Solving   6x2+4x-3 = 0 by Completing The Square .

Divide both sides of the equation by  6  to have 1 as the coefficient of the first term :

  x2+(2/3)x-(1/2) = 0

Add  1/2  to both side of the equation :

  x2+(2/3)x = 1/2

Now the clever bit: Take the coefficient of  x , which is  2/3 , divide by two, giving  1/3 , and finally square it giving  1/9  

Add  1/9  to both sides of the equation :

 On the right hand side we have :

  1/2  +  1/9   The common denominator of the two fractions is  18   Adding  (9/18)+(2/18)  gives  11/18  

 So adding to both sides we finally get :

  x2+(2/3)x+(1/9) = 11/18

Adding  1/9  has completed the left hand side into a perfect square :

  x2+(2/3)x+(1/9)  =

  (x+(1/3)) • (x+(1/3))  =

 (x+(1/3))2

Things which are equal to the same thing are also equal to one another. Since

  x2+(2/3)x+(1/9) = 11/18 and

  x2+(2/3)x+(1/9) = (x+(1/3))2

then, according to the law of transitivity,

  (x+(1/3))2 = 11/18

We'll refer to this Equation as  Eq. #3.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

  (x+(1/3))2   is

  (x+(1/3))2/2 =

 (x+(1/3))1 =

  x+(1/3)

Now, applying the Square Root Principle to  Eq. #3.2.1  we get:

  x+(1/3) = √ 11/18

Subtract  1/3  from both sides to obtain:

  x = -1/3 + √ 11/18

Since a square root has two values, one positive and the other negative

  x2 + (2/3)x - (1/2) = 0

  has two solutions:

 x = -1/3 + √ 11/18

  or

 x = -1/3 - √ 11/18

Note that  √ 11/18 can be written as

 √ 11  / √ 18  

Solve Quadratic Equation using the Quadratic Formula

3.3     Solving    6x2+4x-3 = 0 by the Quadratic Formula .

According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

           - B  ±  √ B2-4AC

 x =   ————————

                     2A

 In our case,  A   =     6

                     B   =    4

                     C   =   -3

Accordingly,  B2  -  4AC   =

                    16 - (-72) =

                    88

Applying the quadratic formula :

              -4 ± √ 88

  x  =    —————

                   12

Can  √ 88 be simplified ?

Yes!   The prime factorization of  88   is

  2•2•2•11  

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 88   =  √ 2•2•2•11   =

               ±  2 • √ 22

 √ 22   , rounded to 4 decimal digits, is   4.6904

So now we are looking at:

          x  =  ( -4 ± 2 •  4.690 ) / 12

Two real solutions:

x =(-4+√88)/12=-1/3+1/6√ 22 = 0.448

or:

x =(-4-√88)/12=-1/3-1/6√ 22 = -1.115

5 0
3 years ago
Read 2 more answers
Gabe rolled 14 strikes out of 70 attempts. What percent of Gabe's attempts were strikes?
Airida [17]

Answer:

20%

Step-by-step explanation:

14/70x100=20%

5 0
3 years ago
Other questions:
  • A research firm conducts a sample survey and discovers that 90% of people are more afraid of snakes than they are of flying. If
    12·1 answer
  • How do I graph x squared + (y+4) squared = 9
    12·1 answer
  • Suppose you add two linear equations that form a system, and you get the result −5 = −5. How many solutions does the system have
    10·1 answer
  • What’s the area of the triangle?
    9·1 answer
  • One student runs 90,000 millimeters, and another runs 20,000 centimeters
    7·1 answer
  • Review the graph of g(x).
    9·1 answer
  • Please help me with this
    10·1 answer
  • Look at the figure shown below:
    8·2 answers
  • Find the slope of the line that passes through (5,8) and (7,12)
    11·2 answers
  • Brainliest for the correct answer :&gt;
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!