In circle O, RT and SU are diameters. mArc R V = mArc V U = 64°. Thus, option C is correct.
Given that:
mArc R V = mArc V U,
Angle S O R = 13 x degrees
Angle T O U = 15 x - 8 degrees
<h3>How to calculate the angle TOU ?</h3>
∠SOR = ∠TOU (Vertically opposite angles are equal).
Therefore:
13 x = 15x - 8
Subtracting 13x from both sides
13x - 13x = 15x - 8 - 13x
0 = 15x - 13x - 8
2x - 8 = 0
Adding 8 to both sides:
2x - 8 + 8 = 0 + 8
2x = 8
2x/2 = 8/2
x = 4
∠SOR = 13x
= 13(4)
= 52°
∠TOU = 15x - 8
= 15(4) - 8
= 60 - 8
= 52°
Let a = mArc R V = mArc V U
Therefore:
mArc R V + mArc V U + ∠TOU = 180 (sum of angles on a straight line)
Substituting:
a + a + 52 = 180
2a = 180-52
2a = 128
a = 128/2
a= 64°
mArc R V = mArc V U = 64°
In circle O, RT and SU are diameters. mArc R V = mArc V U = 64°. Thus, option C is correct.
Learn more about angles here:
brainly.com/question/2882938
#SPJ1
For this case, the first thing we must do is define variables.
We have then:
x: number of blue beads
y: number of red beads
We now write the inequations system:
Answer: a system of linear inequations that represents the situation is:
Step-by-step explanation:
√a = 1√a so we can solve them easily:
b) 3√7 -√7= 3√7 - 1√7 =( 3-1)√7= 2√7
d) 5√6 - 2√6+√6= (5-2+1)√6 = 4√6
g) √2+2√2= 3√2
j) √5+5√5 - 3√5 = 3√5
k) 2√3 + √3 - 5√3= -2√3
I) 5√11 + 7√11 - √11 = 11√11