1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hichkok12 [17]
3 years ago
6

A direct variation function includes the ordered pair (4, 5). Which statement is true? The constant of variation k is mc001-1.jp

g. The constant of variation k is mc001-2.jpg. It is not possible to determine the constant of variation from the information given.
Mathematics
2 answers:
iogann1982 [59]3 years ago
8 0

Answer:

The constant of variation k is 5/4.

devlian [24]3 years ago
7 0
A direct variation suggest that the value of x in the equation would greatly affect the value of y such that when x is increasing, y also increases and the other way around. The equation for a direct variation is that,
                               y  = kx
Substituting the given values in the ordered pair,
                           5 = k(4)   ; k = 5/4
You might be interested in
Help fast will give brainlist
Scrat [10]

Answer:

the picture is black send another one

4 0
3 years ago
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
Hows this look?
Roman55 [17]

Answer:

Step-by-step explanation:

pretty good among us character

7 0
3 years ago
Read 2 more answers
Express this sum using summation notation 1+1/2+1/3+1/4+1/5+1/6
vesna_86 [32]

Answer:

21

Step-by-step explanation:

the sum of the express of the summation of the notation

4 0
2 years ago
Read 2 more answers
Plssssssssssssssssssssssss
kykrilka [37]

Answer:

  1. 16/5
  2. \sqrt{5\\}
  3. 6/7
  4. -3

8 0
2 years ago
Read 2 more answers
Other questions:
  • What is an expression?
    12·1 answer
  • Private nonprofit four-year colleges charge, on average, $27,293 per year in tuition and fees. The standard deviation is $7,235.
    10·1 answer
  • For what values of m does the graph of y = 3x^2 + 7x + m have two x-intercepts? a) m&gt;12/49 b) m&lt;12/49 c) m&lt;49/12 d) m&g
    14·1 answer
  • How many 2 inch cubes are needed to completely fill a cubic box of edges 8 inches?
    10·1 answer
  • PLEASE HELP I AM BEGGING YOU!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I WILL GIVE BRAINLIEST AND EXTRA POINTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    11·1 answer
  • What is an equation of the line that is perpendicular to -x+3y=9 and passes through the point (-3,2)
    14·1 answer
  • **answer fast pls**
    15·2 answers
  • For every 4 adults at the beach one afternoon, there were 3 childern. how many childern were at the beach if there were 8, 12, 1
    11·1 answer
  • (-3 +6 i )(-3 - 6 i )
    8·1 answer
  • assume the camera is placed 6 feet from the center of the merry-go-round and the diameter of the merry-go-round is 6 feet. build
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!