Answer:
YES
NO
NO
Step-by-step explanation:
The given polynomial is: ![$ f(x) = x^3 + 4x^2 - 25x - 100 $](https://tex.z-dn.net/?f=%24%20f%28x%29%20%3D%20%20x%5E3%20%2B%204x%5E2%20-%2025x%20-%20100%20%24)
(x - a) is a factor of a polynomial iff x = a is a solution to the polynomial.
To check if (x - 5) is a factor of the polynomial f(x), we substitute x = 5 and check if it satisfies the equation.
∴ f(5) = 5³ + 4(5)² - 25(5) - 100
= 125 + 100 - 125 - 100
= 225 - 225
= 0
We see, x = 5 satisfies f(x). So, (x - 5) is a factor to the polynomial.
Now, to check (x + 2) is a factor.
i.e., to check x = - 2 satisfies f(x) or not.
f(-2) = (-2)³ + 4(-2)² - 25(-2) - 100
= -8 + 16 + 50 - 100
= -108 + 66
≠ 0
Therefore, (x + 2) is not a factor of f(x).
To check (x - 4) is a factor.
∴ f(4) = 4³ + 4(4)² - 25(4) - 100
= 64 + 64 - 100 - 100
= 128 - 200
≠ 0
Therefore, (x - 4) is not a factor of f(x).
Answer:
y = 12
Step-by-step explanation:
Use the equation y = kx
Plug in x and y to find k:
2 = k(16)
1/8 = k
Then, plug in 1/8 as k and 96 as x to find y:
y = 1/8(96)
y = 12
The solution for y=2x-4: y= -8
The solution for y=3x-4: y= -12
Answer:
9 over 5
Step-by-step explanation:
Answer:
It is 1) True hope this helps