The frequency produced by the string could be 437 Hz or it could be 443 Hz.
The frequency of the beats ... 3 Hz ... tells the piano tuner that
the difference between the fork and string frequencies is 3 Hz,
but it doesn't tell her which one is higher or lower.
Answer:
13.51 nm
Explanation:
To solve this problem, we are going to use angle approximation that sin θ ≈ tan θ ≈ θ where our θ is in radians
y/L=tan θ ≈ θ
and ∆θ ≈∆y/L
Where ∆y= wavelength distance= 2.92 mm =0.00292m
L=screen distance= 2.40 m
=0.00292m/2.40m
=0.001217 rad
The grating spacing is d = (90000 lines/m)^−1
=1.11 × 10−5 m.
the small-angle
approx. Using difraction formula with m = 1 gives:
mλ = d sin θ ≈ dθ →
∆λ ≈ d∆θ = =1.11 × 10^-5 m×0.001217 rad
=0.000000001351m
= 13.51 nm
Answer:
The force exerted by the ball on the bat has a magnitude of 100 N and its direction is exactly opposite to that of the force exerted by the bat on the ball.
Explanation:
Recall that Newton's third law tells us that : "For every action, there is an equal and opposite reaction."
Therefore if the bat acts on the ball with a force of 100 N, the ball acts on the bat with a similar magnitude of force (100 N) but direction opposite to the original force.

Answer:
the wind carries abrasive materials
Explanation:
such as sand and salt over time theses small particles slowly strip way at the land form sculpting it by eroding the softer layers first