Answer:
<em>The person needs to apply 25 N to balance the seesaw</em>
Explanation:
<u>Moment</u>
The moment of a force is a measure of its tendency to cause a body to rotate about a specific point or axis.
The moment M of a force F located at a distance x from the axis of rotation is calculated as follows:
M = F.x
The image shows a moment of M=100 N.m is needed to be applied to balance the seesaw. It can also be noted that the distance to the pivot is x=4 m
To calculate the force needed to balance the seesaw, we solve for F:


F = 25 N
The person needs to apply 25 N to balance the seesaw
Answer:
The answer to your question is:
Explanation:
Data
mass = 4.33 kg
E = 41.7 J
v = ?
Formula
Ke = (1/2)mv²
Clear v from the equation
v = √2ke/m
Substitution
v = √2(41.7)/4.33
v = 19.26 m/s Result
Answer:
When a magnet causes a paper clip to move, it's an example of Potential energy being changed in to Kinetic energy
A child running is an example of Kinetic energy
A motionless iron object in the magnetic field of a magnet may be said to have Potential energy
The angle between 2 o'clock and 12 o'clock is referred to as the angle of twist. The angle between the planes of maximum shear which is bisected by the axis of greatest compression is angle of shear.