Answer: The bacteria transformed with this particular plasmid will form white colonies on the plates containing ampicillin and Xgal.
Explanation: The lacZ gene produces an enzyme called β-galactosidase which is responsible for the breakdown of lactose into glucose and galactose. The lacZ gene is one of the three genes (the other two being lacA and lacY) of the lac operon which is responsible for the transport and mechanism of lactose in E. coli and many other bacteria.
In recombinant DNA technology, when a plasmid is to be used to transform a host cell, such markers are used to help screen the transformed cells from the ones that have not taken up the plasmid. Xgal present in the plates is an artificial substrate which is hydrolyzed by
β-galactosidase into 5-bromo-4-chloro-indoxyl which will dimerize and oxidise into 5,5'-dibromo-4,4'dichloro-indigo. This is a blue pigment which will give blue color to the bacterial cells. Introducing a DNA fragment in this lacZ gene will make it non-functional so it will not be able to produce the enzyme.
Therefore, when a bacterial cell is transformed with a plasmid containing ampicillin resistance gene and a DNA fragment introduced in the lacZ gene and then grown on plates containing ampicillin and Xgal, white colored colonies will appear. The white colonies will show the bacterial cells that have successfully taken up the plasmid with the DNA fragment incorporated in the lacZ gene as this will render the gene non-functional and will not produce β-galactosidase which will breakdown Xgal to give blue colonies. Since the plates contain ampicillin, only the bacterial cells that have been successfully transformed with the plasmid ( the ones that have the DNA fragment and the ones without it) will grow as the ampicillin resistance will give them resistance against ampicillin in the plates. The bacterial cells that have not taken up the plasmid will not be resistant to ampicillin and will not form colonies on the plate.
This is called blue-white screening which is used to identify successfully transformed host cells. A picture of this is given in the attachment, taken from the following website:
https://www.mun.ca/biology/scarr/Blue_&_White_Colonies.html
The answer to your problem is question 3 i just took that test i got it right
Answer:
increasing extension time
Explanation:
The Polymerase Chain Reaction is a technique widely used in molecular biology laboratories to amplify target DNA regions. The standard steps of a PCR are as follow 1-denaturation, 2-annealing and 3-elongation/extension. These steps are repeated 15-40 times in order to exponentially amplify the linear DNA fragment. It is well known that longer extension times can be used as a strategy to increase the yield of longer PCR products. This is because the extension time depends on the synthesis rate of the DNA polymerase used in PCR technique and the length of the DNA fragment to be amplified.
Answer:
The particularly severe winter of 1777-1778 proved to be a great trial for the American army, and of the 11,000 soldiers stationed at Valley Forge, hundreds died from disease. However, the suffering troops were held together by loyalty to the Patriot cause and to General Washington, who stayed with his men.
Answer:

point mutation, change within a gene in which one base pair in the DNA sequence is altered. Point mutations are frequently the result of mistakes made during DNA replication, although modification of DNA, such as through exposure to X-rays or to ultraviolet radiation, also can induce point mutations