Answer:
I wish I could help but do not understand one bit like I am lost right now my brain is dead I can't get one thing you write
Answer:
a.The phenotypic proportions obtained after having the genotypes are 50% marbled seeds, 25% spotted and dotted seeds since they are codominant, 25% spotted seeds.
b. Taking into account the F1 genotypes in the previous point, the expected phenotypes for the first crossing are 100% marbled seeds and for the second crossing 100% dotted seeds.
Explanation:
Let's suppose:
Marbled allele: M
Spotted allele: S
Dotted allele: D
Allele for Clear: C
a. Because both crosses were between homozygous parents, the entire F1 genotype is the same.
For the first crossing the descendants have the MS genotype, and for the second crossing the descendants have the DC genotype. It is enough to make a Punnett square to obtain the different combinations of genotypes between the crossing of MS and DC.
Answer:
Sending humans to other planets may cause danger. We dont fully know what these planets are capable of doing. If there is such a thing as life on other planets then we still dont know weather or not life there is friendly or not. They could be harmful, because just as we dont know know exactly who or what they are, they dont know who or what they are either, so its a high chance they may want to defend themselves.
Explanation:
There are two main reasons. First, there are introns and exons existed in eukaryotes. Introns do not contain the genetic information but are in large amount in chromosome. So, if the mutation occurs in the introns, it will be recessive. Second, one amino acid will corresponding to several base sequences. For example, UUU and UUC all represent Phe. This is called degeneracy. So if the mutation did not change the amino acid, it is also recessive.