1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
4 years ago
10

5 min 0 sec minus 35 sec

Mathematics
1 answer:
nata0808 [166]4 years ago
5 0
4 minutes and 25 seconds
You might be interested in
Which quadratic regression equation best fits the data set?
nata0808 [166]

Answer: y = 1.87x^2 -5.16 x + 10.54

Step-by-step explanation:

Since the general quadratic equation is,

y = ax^2 + bx+c

Here the given table is,

x           1             2              3            4               5              6             7

y          5.9        8.9          13.4         20.1          30.1         45.1        67.7

By the graphing calculator,

a = 1.87024 ≈ 1.87

b= -5.15833 ≈ -5.15

c = 10.5429 ≈ 10.54

By putting the values of a, b and c,

The required quadratic equation is,

1.87 x^2 -5.15x + 10.54

⇒ First Option is correct.

6 0
4 years ago
Read 2 more answers
Solve.<br> 7 pounds x 16 ounces =<br> pounds plz hero
Rama09 [41]
The answer is 7 pounds because 16 ounces is equal to 1 pound so 7 pounds times 1 pound would equal 7 pounds.
4 0
3 years ago
Quanto é 40 de 45% preciso urgente
saw5 [17]
My Spanish isn't that great but I think you're looking for 18
5 0
4 years ago
NO LINKS!!! Find the arc measure and arc length of AB. Then find the area of the sector ABQ.​
Norma-Jean [14]

Answer:

<u>Arc Measure</u>:  equal to the measure of its corresponding central angle.

<u>Formulas</u>

\textsf{Arc length}=2 \pi r\left(\dfrac{\theta}{360^{\circ}}\right)

\textsf{Area of a sector of a circle}=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2

\textsf{(where r is the radius and the angle }\theta \textsf{ is measured in degrees)}

<h3><u>Question 39</u></h3>

Given:

  • r = 7 in
  • \theta = 90°

Substitute the given values into the formulas:

Arc AB = 90°

\textsf{Arc length of AB}=2 \pi (7) \left(\dfrac{90^{\circ}}{360^{\circ}}\right)=3.5 \pi=11.00\:\sf in\:(2\:d.p.)

\textsf{Area of the sector AQB}=\left(\dfrac{90^{\circ}}{360^{\circ}}\right) \pi (7)^2=\dfrac{49}{4} \pi=38.48\:\sf in^2\:(2\:d.p.)

<h3><u>Question 40</u></h3>

Given:

  • r = 6 ft
  • \theta = 120°

Substitute the given values into the formulas:

Arc AB = 120°

\textsf{Arc length of AB}=2 \pi (6) \left(\dfrac{120^{\circ}}{360^{\circ}}\right)=4\pi=12.57\:\sf ft\:(2\:d.p.)

\textsf{Area of the sector AQB}=\left(\dfrac{120^{\circ}}{360^{\circ}}\right) \pi (6)^2=12 \pi=37.70\:\sf ft^2\:(2\:d.p.)

<h3><u>Question 41</u></h3>

Given:

  • r = 12 cm
  • \theta = 45°

Substitute the given values into the formulas:

Arc AB = 45°

\textsf{Arc length of AB}=2 \pi (12) \left(\dfrac{45^{\circ}}{360^{\circ}}\right)=3 \pi=9.42\:\sf cm\:(2\:d.p.)

\textsf{Area of the sector AQB}=\left(\dfrac{45^{\circ}}{360^{\circ}}\right) \pi (12)^2=18 \pi=56.55\:\sf cm^2\:(2\:d.p.)

8 0
2 years ago
What is 2 + 2 - 1 = ????
Snowcat [4.5K]
2 + 2 - 1 is 3. lol.
6 0
4 years ago
Read 2 more answers
Other questions:
  • Teresa stated that the heights of the students in her class were not a function of their ages. Which reasoning could justify Ter
    7·2 answers
  • Given LINELR, solve for X.<br> ,<br> η<br> ΟΟΟΟ
    11·1 answer
  • Calculate the sum of 1/4 and 1/7
    6·1 answer
  • What is a real-word problem finding an equivalent measurement for 12 kilometers
    7·1 answer
  • Tamia Works For a publishing Firm . She is considered an average typist and can type 52words/minute . if she continues at this r
    12·1 answer
  • Will mark branliest
    7·2 answers
  • What is 4/5 times 7/12
    6·1 answer
  • It Costs Nike about $13 to make a pair of Jordan Sneakers. The Markup is 1250%.
    15·1 answer
  • PLIS HELPPP I DON'T UNDERSTAND THIS
    7·2 answers
  • Find the volume of the solid :)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!